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Abstract

This paper studies large scatter matrix estimation for heavy tailed distributions. The

contributions of this paper are twofold. First, we propose and advocate to use a new

distribution family, the pair-elliptical, for modeling the high dimensional data. The

pair-elliptical is more flexible and easier to check the goodness of fit compared to the

elliptical. Secondly, built on the pair-elliptical family, we advocate using quantile-based

statistics for estimating the scatter matrix. For this, we provide a family of quantile-

based statistics, which balances the efficiency and robustness. In particular, we show that

the propose estimators have comparable performance to the moment-based counterparts

under the Gaussian assumption. The method is also tuning-free compared to Catoni’s

M-estimator for covariance matrix estimation. We further apply the method to conduct

a variety of statistical methods. The corresponding theoretical properties as well as

numerical performances are provided.

Keyword: Heavy-tailed distribution; Pair-Elliptical Distribution; Quantile-based statistics; Scat-

ter matrix.

1 Introduction

Large covariance matrix estimation is a core problem in multivariate statistics. Pearson’s sample

covariance matrix is widely used for estimation and proves to enjoy certain optimality under the

subgaussian assumption (Bickel and Levina, 2008a,b; Cai et al., 2010; Cai and Zhou, 2012a; Lounici,

2014). However, this assumption is not realistic in many real applications where data are heavy-

tailed (Chen, 2002; Bradley and Taqqu, 2003; Han and Liu, 2014).

To handle heavy-tailed data, rank-based statistics are proposed. Compared to Pearson’s sample

covariance, rank-based estimators achieve extra efficiency via exploiting the dataset’s geometric

structures. Such structures, like symmetry, are naturally involved in the data generating scheme and

allow for both efficient and robust inference. Conducting rank-based covariance matrix estimation
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includes two steps. The first step is to estimate the (latent) correlation matrix. For this, Liu et al.

(2012a), Xue and Zou (2012), Han and Liu (2012a), Han et al. (2013), Han and Liu (2012b), Liu

et al. (2012b), and Han and Liu (2013a) exploit Spearman’s rho and Kendall’s tau estimators.

They work under the nonparanormal or the transelliptical distribution family. The second step is

to estimate marginal variances. For this, Wang et al. (2014), Fan et al. (2013a), and Fan et al.

(2014) exploit Catoni’s M-estimator (Catoni, 2012). However, Catoni’s estimator requires to tune

parameters. Moreover, it is sensitive to outliers and accordingly is not a robust estimator.

In this paper, we strengthen the results in the literature in two directions. First, we propose and

advocate to use a new distribution family, the pair-elliptical. The pair-elliptical family is strictly

larger and requires less symmetry structure than the elliptical. We provide detailed studies on

the relation between the pair-elliptical and several heavy tailed distribution families, including the

nonparanormal, elliptical, and transelliptical. Moreover, it is easier to test the goodness of fit for

the pair-elliptical. For conducting such a test, we combine the existing results in low dimensions

(Li et al., 1997; Koltchinskii and Sakhanenko, 2000; Sakhanenko, 2008; Huffer and Park, 2007;

Batsidis et al., 2014) with the familywise error rate controlling techinques including the Bonferonni’s

correction, the Holm’s step-down procedure (Holm, 1979), and the higher criticism method (Donoho

and Jin, 2004; Hall and Jin, 2010).

Secondly, built on the pair-elliptical family, we propose a new set of quantile-based statistics for

estimating scatter/covariance matrices1. We also provide the theoretical properties of the proposed

methods. In particular, we show that the proposed quantile-based methods outperform the existing

ones for better balancing the robustness and efficiency. As applications, we exploit the proposed

estimators for conducting several high dimensional statistical methods, and show the advantages

of using the quantile-based statistics both theoretically and empirically.

1.1 Other Related Works

The quantile-based statistics, such as the median absolute deviation (Hampel, 1974) and the Qn es-

timators (Rousseeuw and Croux, 1993; Croux and Ruiz-Gazen, 2005), have been used in estimating

marginal standard deviations. Their properties in parameter estimation and robustness to outliers

are further studied in low dimensions (Huber and Ronchetti, 2009). Moreover, these estimators

have been generalized to estimate the dispersions between random variables (Gnanadesikan and

Kettenring, 1972; Genton and Ma, 1999; Ma and Genton, 2001; Maronna and Zamar, 2002).

Given these results, we mainly make three contributions: (i) Methodologically, we propose

new quantile-based estimators that generalize the existing MAD and Qn estimators for better

balancing the efficiency and robustness and study their statistical properties in the high dimensional

setting. (ii) Theoretically, we provide more understandings on the quantile-based methods. They

confirm that the quantile-based estimators are also good alternatives to the prevailing moment-

based estimators in high dimensions. (iii) We propose a projection method for overcoming the

lack of positive semidefiniteness, which is typical in the robust scatter matrix estimation. This

approach maintains the efficiency as well as robustness to data contamination, while the prevailing

SVD decomposition approach (Maronna and Zamar, 2002) cannot.

1The scatter matrix is any matrix proportional to the covariance matrix. See Maronna et al. (2006) for more

details.
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Of note, the effectiveness of quantile-base methods is being realized in other fields in high

dimensional statistics. For example, Wang et al. (2012), Belloni and Chernozhukov (2011), and

Wang (2013) provide analysis on the penalized quantile regression and show that it can handle the

case that the noise term is very heavy-tailed. Our method, although very different from theirs,

shares similar properties.

1.2 Notation System

Let M = [Mjk] ∈ Rd×d be a matrix and v = (v1, ..., vd)
T ∈ Rd be a vector. We denote vI to be the

subvector of v whose entries are indexed by a set I ⊂ {1, . . . , d}. We denote MI,J to be the subma-

trix of M whose rows and columns are indexed by I and J . For 0 < q <∞, we define the `0, `q, and

`∞ vector (pseudo-)norms to be ||v||0 :=
∑d

j=1 I(vj 6= 0), ||v||q := (
∑d

j=1 |vj |q)1/q, and ||v||∞ :=

max1≤j≤d |vj |. Here I(·) represents the indicator function. For a matrix M, we denote the ma-

trix `q, `max, and Frobenius `F-norms of M to be ||M||q := max‖v‖q=1 ‖Mv‖q, ||M||max :=

maxjk |Mjk|, and ||M||F := (
∑

j,k |Mjk|2)1/2. For any matrix M ∈ Rd×d, we denote diag(M)

to be the diagonal matrix with the same diagonal entries as M, and Id ∈ Rd×d to be the d by d

identity matrix. Let λj(M) and uj(M) represent the j-th largest eigenvalue and the corresponding

eigenvector of M, and 〈M1,M2〉 := Tr(MT
1 M2) be the inner product of M1 and M2. For any two

random vectors X and Y , we write X
D
= Y if and only if X and Y are identically distributed.

Throughout the paper, we let c, C be two generic absolute constants, whose values may vary at

different locations.

1.3 Paper Organization

The rest of the paper is organized as follows. In the next section we provide the theoretical eval-

uation of the impacts of heavy tails on the moment-based estimators. This motivates our work.

Section 3 proposes the pair-elliptical family, and reveals the connection among the Gaussian, ellip-

tical, nonparanormal, transelliptical, and pair-elliptical. In Section 4, we introduce the generalized

MAD and Qn estimators for estimating scatter/covariance matrices. Section 5 provides the the-

oretical results. Section 6 discusses parameter selection. In Section 7, we apply the proposed

estimators to conduct multiple multivariate methods. We put experiments on synthetic and real

data in Section 8, more discussions in Section 9, and technical proofs in the appendix.

2 Impacts of Heavy Tails on Moment-Based Estimators

This section illustrates the motivation of quantile-based estimators. In particular, we show how

moment-based estimators fail for heavy tailed data. These estimators include the sample mean

and sample covariance matrix. Such estimators are known to be efficient under stringent moment

assumptions (Lounici, 2014). However, their performance drops down when such assumptions are

violated (Cai et al., 2011; Liu et al., 2012a).

We characterize the heavy tailedness by the Lp norm. In detail, for any random variable X ∈ R
and integer p ≥ 1, we define the Lp norm of X as

||X||Lp := (E|X|p)1/p.

3



The random variable X is heavy tailed if there exists some p > 0 such that

||X||Lq ≤ K ≤ ∞ for q ≤ p, and ||X||Lp+1 =∞.

The heavy tailedness of X is measured by how large p could be such that the p-th moment exists.

In the following we first provide an upper bound of the sample mean. It illustrates the “optimal

rate but sub-optimal scaling” phenomenon.

Theorem 2.1. Suppose X = (X1, . . . , Xd)
T ∈ Rd is a random vector with the population mean

µ. Assume X satisfies ||Xj ||Lp ≤ K, where we assume d = O(nγ) and p = 2 + 2γ+ δ. Letting µ̄ be

the sample mean of n independent observations of X, we then have, with probability no smaller

than 1− 2d−2.5 − (log d)p/2n−δ/2,

||µ̄− µ||∞ ≤ 12K ·
√

log d

n
.

Theorem 2.1 shows that, for preserving the OP (
√

log d/n) rate of convergence, p determines

how large the dimension d can be compared to n. For example, when at most (4 + ε)-th moment

exists for X for some ε > 0, the sample mean attains the optimal rate OP (
√

log d/n) under the

suboptimal scaling d = O(n).

The results in Theorem 2.1 cannot be improved without adding more assumptions. Via a worst

case analysis, the next theorem characterizes the sharpness of Theorem 2.1.

Theorem 2.2. For any fixed constant C, p = 2 + 2γ with γ > 0, and d = nγ+δ0 for some δ0 > 0,

there exists certain random vector X, satisfying

||Xi||Lq < K, for some absolute constant K > 0 and all q ≤ p,

such that, with probability tending to 1, we have

||µ̄− µ||∞ ≥
√
C log d

n
.

Theorems 2.1 and Theorem 2.2 together illustrate the constraints of applying moment-based

estimators to study heavy tailed distributions. This motivates us to consider alternative methods

that are more efficient in handling heavy tailedness.

3 Pair-Elliptical Distribution

In this section, we introduce the pair-elliptical distribution family. We first briefly review several

existing distribution families: Gaussian, elliptical, nonparanormal, and transelliptical. Then we

elaborate the relations between the pair-elliptical and aforementioned families.

3.1 Multivariate Distribution Families

We start by first introducing the elliptical distribution. The elliptical family contains symmetric

but possibly very heavy tailed distributions.
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Definition 3.1 (Elliptical distribution, Fang et al. (1990)). A d-dimensional random vector X is

said to follow an elliptical distribution if and only if there exists a vector µ ∈ Rd, a nonnegative

random variable ξ ∈ R, a matrix A ∈ Rd×q (q ≤ d) of rank q, a random vector U ∈ Rq uniformly

distributed in q-dimension sphere Sq−1 and independent from ξ, such that

X
D
= µ+ ξAU .

In this case, we represent X ∼ ECd(µ,S, ξ), where S := AAT is of rank q.

Remark 3.2. An equivalent definition of the elliptical distribution is: Any random vector X ∼
ECd(µ,S, ξ) is elliptically distributed if and only if the characteristic function of X is of the form

exp(itTµ)φ(tTSt), where i is the imaginary number satisfying i2 = −1, φ is a properly defined

characteristic function, and there exists a one to one map between ξ and φ. In this case, we

represent X ∼ ECd(µ,S, φ). Moreover, when the elliptical distribution is absolutely continuous,

the density function is of the form g((x− µ)TS−1(x− µ)) for some nonnegative function g(·). In

this case, we represent X ∼ ECd(µ,S, g).

Although elliptical distributions have been extensively explored in modeling many real world

data, including financial (Owen and Rabinovitch, 1983; Berk, 1997; McNeil et al., 2010; Embrechts

et al., 2002) and imaging data (Marden and Manolakis, 2004; Frontera-Pons et al., 2012), it can

be quite restrictive due to the symmetry constraint (Frahm, 2004). One way to handle asymmetric

data is to exploit the copula technique. This results to the transelliptical family (meta-elliptical

family) proposed and discussed in Fang et al. (2002) and Han and Liu (2014). Below we give the

formal definition of the transelliptical distribution in Han and Liu (2014).

Definition 3.3 (Transelliptical distribution, Han and Liu (2014)). A continuous random vector

X = (X1, . . . , Xd)
T follows a transelliptical distribution, denoted by X ∼ TEd(Σ0, ξ; f1, . . . , fd), if

there exist univariate strictly increasing functions f1, . . . , fd such that

(f1(X1), . . . , fd(Xd))
T ∼ ECd(0,Σ0, ξ), where diag(Σ0) = Id and P(ξ = 0) = 0. (3.1)

In particular, when

(f1(X1), . . . , fd(Xd))
T ∼ Nd(0,Σ

0), where diag(Σ0) = Id,

X follows a nonparanormal distribution (Liu et al., 2009, 2012a). Here Σ0 is called the latent

generalized correlation matrix.

3.2 Pair-Elliptical Distribution

In this section we propose a new distribution family, the pair-elliptical. Compared to the elliptical

and transelliptical, the pair-elliptical distribution is of more interest to us. Specifically, it balances

the modeling flexibility and interpretability in covariance/scatter matrices estimation.

Definition 3.4. A continuous random vector X = (X1, . . . , Xd)
T is said to follow a pair-elliptical

distribution, denoted by X ∼ PEd(µ,S, ξ), if and only if any pair of random variables (Xj , Xk)
T

of X is elliptically distributed. In other words, we have

(Xj , Xk)
T ∼ EC2

(
µ{j,k},S{j,k},{j,k}, ξ

)
for all j 6= k ∈ {1, . . . , d} and P(ξ = 0) = 0.
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As a special example, a distribution is said to be pair-normal, written as PNd(µ,S), if any pairs

of X is bivariate Gaussian distributed.

It is obvious that the pair-elliptical family contains the elliptical distribution family. Moreover,

the elliptical is a strict subfamily of the pair-elliptical by considering the following example.

Example 3.5. Let f(X1, X2, X3) be the density function of a three dimensional standard Gaussian

distribution with median 0 and covariance matrix I3, and X = (X1, X2, X3)T be a 3-dimensional

random vector with the density function

g(X1, X2, X3) =

{
2f(X1, X2, X3), if X1X2X3 ≥ 0,

0, otherwise.
(3.2)

The distribution in Example 3.5 with density in (3.2) is bivariate Gaussian distributed for

any pairwise marginal distributions, and therefore belongs to the pair-elliptical family. On the

other hand, this distribution is marginally Gaussian distributed but not multivariate Gaussian

distributed, and accordingly cannot be elliptically distributed.

Example 3.5 also shows that the pair-elliptical distribution can be asymmetric. Moreover,

the pair-elliptical distribution has a naturally defined scatter matrix S, which is proportional to

the covariance matrix Σ when Eξ2 exists. This makes the pair-elliptical compatible with many

multivariate methods such as principal component analysis and linear discriminant analysis.

The rest of this section focuses on characterizing the relations among the Gaussian, elliptical2,

transelliptical, nonparanormal, pair-elliptical, and pair-normal families. Recall that in this paper

we are only interested in the continuous distributions with density existing. It is obvious that the

Gaussian family is a strict subfamily of the elliptical, and the elliptical is also a strict subfamily of

both the transelliptical and the pair-elliptical. The next proposition shows that the only intersection

between the elliptical and the nonparanormal is the Gaussian.

Proposition 3.6 (Liu et al. (2012b)). If a random vector is both nonparanormally and elliptically

distributed, it must follow a Gaussian distribution.

In the next proposition, we show that the only intersection between the transelliptical and the

pair-elliptical is the elliptical.

Proposition 3.7. If a random vector is both transelliptically and pair-elliptically distributed, it

must follow an elliptical distribution.

We defer the proof of Preposition 3.7 to the appendix. In the end, let’s consider the relation

among the pair-normal and all the other distribution families. By definition, the pair-normal is

a strict subfamily of the pair-elliptical. On the other hand, the next proposition shows that any

random scaled version of the pair-normal is pair-elliptically distributed.

Proposition 3.8. Let Y ∼ PNd(µ,S) follow a pair-normal distribution. Then for any nonnegative

random variable ξ with P(ξ = 0) = 0 and independent of Y , we have X = µ′ + ξY follows a pair-

elliptical distribution.

In the end, we have the following proposition, which characterizes pair-normal’s connections to

the elliptical and nonparanormal distributions.

2In the rest of this section we only focus on the continuous elliptical distributions with P(ξ = 0) = 0. And we are

only interested in those whose covariance matrix is not the identity.
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transelliptical pair-elliptical

Gaussian

elliptical*

nonparanormal pair-normala

Figure 1: The Venn diagram illustrating the relations of the Gaussian, elliptical, nonparanormal, transellip-

tical, pair-normal, and pair-elliptical families. Here “elliptical*” represents the continuous elliptical family

with P(ξ = 0) = 0.

Proposition 3.9. For the pair-normal, elliptical, and nonparanormal distributions, we have

(i) The only intersection between the pair-normal and elliptical is the Gaussian;

(ii) The only intersection between the pair-normal and nonparanormal is the Gaussian.

In conclusion, the Venn diagram in Figure 1 summarizes the relation among the Gaussian,

elliptical, nonparanormal, transelliptical, pair-normal, and pair-elliptical. From the figure, we can

see that the Gaussian distribution locates in the central area whose covariance can be well estimated

by the sample covariance matrix. The transelliptical covers the left-hand side of the diagram, where

we advocate using rank-based estimators to estimate the covariance matrix. The pair-elliptical

covers a new regime on the right-hand side of the diagram, where we will introduce the quantile-

based estimators for estimating the covariance matrix.

3.3 Goodness of Fit Test of the Pair-Elliptical

This section proposes a goodness of fit test of the pair-elliptical. The pair-elliptical family has its

advantages here: Both the transelliptical and elliptical require global geometric constraints over

all covariates; In comparison, the pair-elliptical only requires a local pairwise symmetry structure,

which could be more easily checked. In this section, we combine the test of elliptical symmetry

proposed in Batsidis et al. (2014) with the step-down procedure in Holm (1979) for performing the

pair-elliptical goodness of fit test.

Specifically, we propose a test of pair-elliptical:

H0 : The data are pair-elliptically distributed. (3.3)

The proposed test is in two steps: In the first step, we test the pairwise elliptical symmetry; In the

second step, we use the Holm’s step-down procedure to control the family-wise error.

In the first step, we apply the statistic proposed in Batsidis et al. (2014) for testing pairwise

elliptical symmetry. Let Z and Σ̂ be the sample mean and sample covariance of {Zi}ni=1. We

standardize the data by letting Yi := Σ̂−1/2(Zi−Z) and t(Zi) :=
√

2Ỹi/wi where Ỹi := (Yi1+Yi2)/2
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and w2
i :=

∑2
j=1(Yij−Ỹi)2 for i = 1, . . . , n. Under H0, we have t(Zi)

D→ t1 for i = 1, . . . , n, where t1
is the t distribution with degree of freedom 1. To study the goodness-of-fit of the t-distribution, we

define M := [
√
n], where [·] represents the integer part of a real number and E := n/M . Let T` be

the `/M × 100% quantile of the t1 distribution for ` = 0, . . . ,M , where T0 := −∞ and TM := +∞.

We also denote the observed frequency O` := |{t(Zi) : T`−1 < t(Zi) ≤ T`}| for 1 ≤ ` ≤M . Batsidis

et al. (2014) consider the following Pearson’s chi-squared test statistic:

Z({Zi}) :=

M∑
`=1

(O` − E)2

E
.

By its nature, Z({Zi}) is asymptotically chi-squared distributed with degrees of freedom M − 1.

In the second step, we screen the data to find whether there is any pair {Xj , Xk} that does not

follow an elliptical distribution. Considering the following null hypothesis for any 1 ≤ j, k ≤ d:

Hjk : {Xj , Xk} are elliptically distributed, (3.4)

we use the Holm’s step-down procedure (Holm, 1979) to control the family-wise error rate. Denote

the p-values of Z({(Xij , Xik)}) as πjk and let mjk be the rank statistic of πjk such that

mjk := |{πj′k′ |πj′k′ < πjk, 1 ≤ j′, k′ ≤ d}|.

The Holm’s adjusted p-values are defined as

πHjk := max
{

1− (1− πj′k′)tj′k′ |mj′k′ ≤ mjk, 1 ≤ j′, k′ ≤ d
}
, where tjk = 1−

2(mjk − 1)

d(d− 1)
. (3.5)

Applying the adjusted p-values, we reject Hjk if πHjk is smaller than the level of significance α. Let

ω0 := {(j, k) |Hjk in (3.4) is true, 1 ≤ j 6= k ≤ d}, Holm (1979) shows that we can control the

family-wise error rate as

Pω0

(
πHjk ≤ α for some (j, k) ∈ ω0

)
≤ α.

Under the setting of goodness of fit test and H0 in (3.3), we have ω0 = {(j, k) | 1 ≤ j 6= k ≤ d} and

therefore

PH0

(
πHjk ≤ α for some j 6= k

)
≤ α.

4 Quantile-Based Scatter Matrix Estimation

This section introduces the quantile-based scatter matrix estimators. To this end, we first briefly

review the existing quantile-based estimators, including MAD and Qn proposed in Hampel (1974)

and Rousseeuw and Croux (1993). Secondly, we generalize these two estimators for estimating

scatter matrices. Thirdly, we introduce the projection idea for constructing a positive semidefinite

scatter matrix estimator.
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4.1 Robust Scale Estimation

This section briefly reviews the robust estimators of the true marginal standard deviation. To this

end, we first define the population and sample versions of the quantile function. For any random

variable Z ∈ R and fixed value r ∈ [0, 1], let Q(Z; r) represent the r × 100% quantile of Z:

Q(Z; r) := inf{z : r ≤ P(Z ≤ z)}.

The r × 100% quantile is said to be unique if and only if there exists one and only one z ∈ R such

that P(Z ≤ z) = r. Letting Z(1) ≤ . . . ≤ Z(n) be the ordered statistics of i.i.d. data Z1, . . . , Zn
D
= Z,

we define the empirical version of Q(Z; r) as

Q̂({Zi}; r) := Z(k∗), where k∗ := arg min
i∈{1,...,n}

{ i
n
≥ r
}
. (4.1)

We then introduce the standard deviation estimators based on the quantiles. These include the

median absolute deviation (MAD) and Qn estimators. MAD is defined as follows:

(MAD estimator) cMAD · Q̂
({∣∣∣Zi − Q̂({Zi}; 1

2

)∣∣∣}
i
;
1

2

)
,

where cMAD is the constant making its population counterpart the standard deviation. In general,

cMAD is different for different distributions. MAD is robust to outliers with 1/2 breakdown points

(Huber and Ronchetti, 2009), but has relatively low efficiency compared to the sample standard

deviation under the Gaussian model.

To improve the efficiency while preserving the robustness, the Qn estimator is proposed:

(Qn estimator) cQn · Q̂
({
|Zi − Zi′ |

}
i<i′

; 1/4
)
,

where cQn is another constant comparable to cMAD. Qn is known to be more efficient than MAD.

4.2 Robust Scatter Matrix Estimators

In this section, we propose our approach for estimating the scatter matrix. This is via generalizing

the aforementioned quantile-based scale estimators.

Assume X1, . . . ,Xn are n independent observations of a d-dimensional random vector X =

(X1, . . . , Xd)
T with Xi = (Xi1, . . . , Xid)

T . We first propose to estimate the marginal standard

deviations by generalizing the MAD and Qn estimators. Specifically, we define generalized median

absolute deviation (gMAD) as follows: For the j-th entry of X, the population and sample versions

of gMAD are:

(gMAD) σM(Xj ; r) := Q(|Xj −Q(Xj ; 1/2)|; r),

σ̂M(Xj ; r) := Q̂(|Xij − Q̂({Xij}ni=1; 1/2)|; r). (4.2)

Here the median is replaced by the r×100% quantile3. We then define the generalized Qn estimator

(gQNE) using the same idea. The population and sample versions of the gQNE for the j-th entry

3Later we will show that using the r-th quantile instead of the median can potentially increase the efficiency of

the estimator, in the cost of losing some robustness though.
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of X are:

(gQNE) σQ(Xj ; r) := Q(|Xj − X̃j |; r),

σ̂Q(Xj ; r) := Q̂({|Xij −Xi′j |}i<i′ ; r), (4.3)

where X̃ := (X̃1, . . . , X̃d)
T is an independent copy of X. It is easy to check that, when setting

r = 1/2 and r = 1/4 in (4.2) and (4.3), we recover the median absolute deviation (MAD) and Qn
estimators. This explains why we call them the generalized MAD and Qn estimators. Of note,

for any j ∈ {1, . . . , d}, we have median(Xj − X̃j) = 0. Therefore, gQNE is a generalization to the

gMAD estimator without requiring estimating the medians.

For estimating the scatter matrix, besides estimating the marginal scales, we also need to esti-

mate the covariance between any two random variables. For this, we follow the idea in Gnanadesikan

and Kettenring (1972). We first remind that

Cov(X,Y ) =
1

4

[
{σ(X + Y )}2 − {σ(X − Y )}2

]
,

where for any random variable Z, σ(Z) represents the populational standard deviation of Z. We

then define the robust estimators of the dispersion between X and Y based on gMAD and gQNE

as follows:

σM(X,Y ; r) :=
1

4

[
{σM(X + Y ; r)}2 − {σM(X − Y ; r)}2

]
;

σQ(X,Y ; r) :=
1

4

[
{σQ(X + Y ; r)}2 − {σQ(X − Y ; r)}2

]
.

Let σ̂M(X,Y ) and σ̂Q(X,Y ; r) be the corresponding empirical versions. For any d-dimensional

random vector X = (X1, . . . , Xd)
T , we then define the d by d robust gMAD and gQNE scatter

matrices RM;r = [RM;r
jk ] and RQ;r = [RQ;r

jk ] as follows: For any j ∈ {1, . . . , d} and k < j, we write

RM;r
jj = (σM(Xj ; r))

2, RM;r
jk = RM;r

kj = σM(Xj , Xk; r);

RQ;r
jj = (σQ(Xj ; r))

2, RQ;r
jk = RQ;r

kj = σQ(Xj , Xk; r).

In the later section we will show that RM;r and RQ;r are indeed scatter matrices under the pair-

elliptical family. Let R̂M;r and R̂Q;r be the empirical versions of RM;r and RQ;r via replacing σM(·)
and σQ(·) by σ̂M(·) and σ̂Q(·). R̂M;r and R̂Q;r are the proposed robust scatter matrix estimators.

There are two remarks. First, we do not discuss how to select r in this section, which will be

studied in more details in Section 6. Secondly, we note that R̂M;r and R̂Q;r are both symmetric

matrices by definition. However, they are not necessarily positive semidefinite. We will discuss this

issue in the next section.

4.3 Projection Method

In this section we introduce the projection idea to overcome the lack of positive semidefiniteness

(PSD) in robust covariant matrix estimation. It is known that the robust covariance matrix es-

timator might be non-PSD (Maronna et al., 2006), especially when the dimension is close to or

10
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Figure 2: The plot of the averaged least eigenvalues of a MAD scatter matrix (i.e., R̂M;1/2) against the

dimension d ranging from 2 to 200. Here the n = 50 observations are coming from the standard Gaussian

distribution with dimension d, and the simulations are conducted with 100 repetitions.

higher than the sample size. To illustrate this, Figure 2 shows the averaged least eigenvalue of the

MAD scatter matrix estimator under the standard multivariate Gaussian model, with the sample

size n fixed to be 50 and the dimension d increasing from 2 to 200.

The lack of PSD can cause problems for many high dimensional multivariate methods. To solve

it, we propose a general projection method. In detail, for arbitrary non-PSD matrix estimator R̂,

we consider the projection of R̂ to the positive semidefinite matrix cone:

R̃ = arg min
M�0

||M− R̂||, (4.4)

where M � 0 represents that M is PSD and || · || is a certain matrix norm of interest. For any given

norm || · ||, a computationally efficient algorithm to solve (4.4) is given in Supplementary Material

Section D.

Due to reasons that will become clearer later, we are interested in the projection with regard

to the matrix element wise supremum norm || · ||max in (4.4). Of note, R̃ and R̂ have the same

breakdown point because R̃ is independent of the data conditioning on R̂. Moreover, we have the

following property about R̂.

Lemma 4.1. Let R̃ be the solution to (4.4) with certain matrix norm || · || of interest. We have,

for any t ≥ 0 and M ∈ Rd×d with M � 0,

P
(∥∥R̃−R

∥∥ ≥ t) ≤ P
(∥∥R̂−R

∥∥ ≥ t

2

)
.

Of note, Maronna and Zamar (2002) propose an alternative approach to solve the non-PSD

problem. Their method exploits the SVD decomposition of any given non-PSD matrix. However,

11
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Figure 3: The plot of the averaged estimation erros of the MAD (”MAD”) and PSD scatter matrix estimators

using the projection and SVD decomposition ideas (denoted by ”Projection” and ”SVD”). The distances are

calculated based on the || · ||max norm and are plotted against the dimension d ranging from 2 to 100. Here

the sample size is 50 and observations are coming from a standard Gaussian distributed data with dimension

d, and 2% and 5% data points are randomly chosen and replaced by +N(3, 3) or −N(3, 3). The results are

obtained based on 200 repetitions.

Maronna’s method is not a robust procedure and is sensitive to outliers. More specifically, Figure

3 shows the averaged distance between the population scatter matrix and three different scatter

matrix estimators: the possibly non-PSD MAD estimator (denoted by “MAD”), the PSD estimator

calculated by using Maronna’s SVD decomposition idea (denoted by “SVD”), and the PSD estima-

tor calculated by our projection idea with regard to the || · ||max norm (denoted by “Projection”).

Figures 3 (A) and (B) illustrate the results regarding a standard Gaussian distributed data (i.e., the

data follow a Nd(0, Id) distribution) with 2% and 5% points being randomly chosen and replaced

by +N(3, 3) or −N(3, 3). It shows that the PSD estimator obtained by projection is as insensitive

as the MAD estimator (and their estimation accuracy is very close). On the other hand, Maronna’s

method is very sensitive to such data contamination.

5 Theoretical Results

This section provides the theoretical results of the proposed quantile-based gQNE and gMAD

scatter matrix estimators. The section is divided into two parts: In the first part, under the pair-

elliptical family, we characterize the relations among the population gQNE, gMAD statistics and

Pearson’s covariance matrix; In the second part, we provide the theoretical analysis for gQNE and

gMAD estimators.
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5.1 Quantile-Based Estimators under the Pair-Elliptical

In this section we show that the population gMAD and gQNE statistics, RM;r and RQ;r, are scatter

matrices of X when X is pair-elliptically distributed.

We first focus on gMAD. The next theorem characterizes a sufficient condition under which RM;r

is proportional to the covariance matrix. It also quantifies the scale constant cM;r that connects

RM;r to the covariance matrix.

Theorem 5.1. Suppose that X = (X1, . . . , Xd)
T is a d-dimensional random vector with the co-

variance matrix Σ ∈ Rd×d. Then there exists some constant cM;r such that

RM;r = cM;rΣ,

if for any j 6= k ∈ {1, . . . , d},
√
cM ;r = Q

(∣∣∣Xj −Q(Xj , 1/2)

σ(Xj)

∣∣∣; r) = Q
(∣∣∣Xj +Xk −Q(Xj +Xk; 1/2)

σ(Xj +Xk)

∣∣∣; r)
= Q

(∣∣∣Xj −Xk −Q(Xj −Xk; 1/2)

σ(Xj −Xk)

∣∣∣; r), (5.1)

and the above quantiles are all unique.

We then study gQNE. The next theorem gives a sufficient condition under which RQ;r is pro-

portional to the covariance matrix and again quantifies the scale constant cQ;r.

Theorem 5.2. Suppose that X = (X1, . . . , Xd)
T is a d-dimensional random vector with the co-

variance matrix Σ ∈ Rd×d. Let X̃ be an independent copy of X and Z = (Z1, . . . , Zd)
T := X−X̃.

Then there exists some constant cQ;r such that

RQ;r = cQ;rΣ,

if for any j 6= k ∈ {1, . . . , d},√
cQ;r/2 = Q

(∣∣∣ Zj
σ(Zj)

∣∣∣; r) = Q
(∣∣∣ Zj + Zk
σ(Zj + Zk)

∣∣∣; r) = Q
(∣∣∣ Zj − Zk
σ(Zj − Zk)

∣∣∣; r), (5.2)

and the above quantiles are all unique.

For any random variable X ∈ R, Y is said to be the normalized version of X if Y = (X −
Q(X, 1/2))/σ(X). Accordingly, we have that (5.1) holds if the normalized versions of Xj , Xj +Xk,

and Xj−Xk are all identically distributed, and (5.2) holds if the normalized versions of Zj , Zj+Zk,

and Zj − Zk are all identically distributed.

The next theorem shows that (5.1) and (5.2) hold under the pair-elliptical family.

Theorem 5.3. For any pair-elliptically distributed random vector X ∼ PEd(µ,S, ξ), we have

both RM;r and RQ;r are proportional to S. In particular, when Eξ2 <∞, we have both RM;r and

RQ;r are proportional to the covariance matrix Cov(X) and

cM;r =
(
Q
(
X0;

1 + r

2

))2
and cQ;r = 2

(
Q
(
Z0;

1 + r

2

))2
, (5.3)

where X0 and Z0 are the normalized versions of X1 and Z1.
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Remark 5.4. Theorem 5.3 shows that, under the pair-elliptical family, RM;r and RQ;r are both

proportional to Cov(X) when the covariance exists. Of note, by Theorems 5.1 and 5.2, RM;r or

RQ;r is proportional to Cov(X) as long as (5.1) or (5.2) holds, and therefore can be applied to

study potentially much larger family than the pair-elliptical.

5.2 Theoretical Properties of gMAD and gQNE

This section studies the estimation accuracy for the proposed scatter matrix estimators R̂M;r and

R̂Q;r. We show that the proposed methods are capable of handling heavy-tailed distributions, and

shed light towards robust alternatives to many multivariate methods in high dimensions.

Before proceeding to the main results, we first introduce some extra notation. For any random

vector X = (X1, . . . , Xd)
T and any j 6= k ∈ {1, . . . , d}, we denote F1;j , F̄1;j , F2;j,k, F̄2;j,k, F3;j,k,

and F̄3;j,k to be the distribution functions of Xj , |Xj − Q(Xj ; 1/2)|, Xj + Xk, |Xj + Xk − Q(Xj +

Xk; 1/2)|, Xj −Xk, and |Xj −Xk −Q(Xj −Xk; 1/2)|. We suppose that, for some constants κ1 and

η1 that might scale with n, the following assumption holds:

(A1). min
{j,|y−Q(F1;j ;1/2)|<κ1}

d

dy
F1;j(y) ≥ η1, min

{j,|y−Q(F̄1;j ;r)|<κ1}

d

dy
F̄1;j(y) ≥ η1,

min
{j 6=k,|y−Q(F2;j,k;1/2)|<κ1}

d

dy
F2;j,k(y) ≥ η1, min

{j 6=k,|y−Q(F̄2;j,k;r)|<κ1}

d

dy
F̄2;j,k(y) ≥ η1,

min
{j 6=k,|y−Q(F3;j,k;1/2)|<κ1}

d

dy
F3;j,k(y) ≥ η1, min

{j 6=k,|y−Q(F̄3;j,k;r)|<κ1}

d

dy
F̄3;j,k(y) ≥ η1,

where for the random variable X with distribution function F , we denote Q(F ; r) := Q(X; r).

Assumption (A1) requires that the density functions do not degenerate around median or the r-th

quantiles. It is easy to check that Assumption (A1) is satisfied when we choose η−1
1 = O(

√
‖Σ‖max)

for Gaussian distribution. Based on Assumption (A1), we have the following theorem, characteriz-

ing the estimation accuracy of the gMAD estimator.

Theorem 5.5 (gMAD concentration). Suppose that Assumption (A1) holds and κ1 is lower

bounded by a positive absolute constant. Then we have, for n large enough, with probability

no smaller than 1− 24α2,

||R̂M;r −RM;r||max ≤

max
{ 6

η2
1

(√ log d+ log(1/α)

n
+

1

n

)2
,
4
√
||RM;r||max

η1

(√ log d+ log(1/α)

n
+

1

n

)}
.

In particular, when X is pair-elliptically distributed with the covariance matrix Σ existing, we

have, with probability no smaller than 1− 24α2,

||R̂M;r − cM;rΣ||max ≤

max
{ 6

η2
1

(√ log d+ log(1/α)

n
+

1

n

)2
,
4
√
||cM;rΣ||max

η1

(√ log d+ log(1/α)

n
+

1

n

)}
.

Theorem 5.5 shows that, when κ1, η1, ||Σ||max, and cM;r are upper and lower bounded by positive

absolute constants, the convergence rate of R̂M;r with regard to the ‖ · ‖max is OP (
√

log d/n). This
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is comparable to the existing results under subgaussian settings (See, for example, Theorem 1 in

Cai and Zhou (2012a) and the discussion therein).

We then proceed to quantify the estimation accuracy of the gQNE estimator R̂Q;r. Let X̃ =

(X̃1, . . . , X̃d)
T be an independent copy of X. For any j 6= k ∈ {1, . . . , d}, let G1;j , G2;j,k, and G3;j,k

be the distribution functions of |Xj − X̃j |, |Xj + Xk − (X̃j + X̃k)|, and |Xj − Xk − (X̃j − X̃k)|.
Suppose that for some constants κ2 and η2 that might scale with n, the following assumption holds:

(A2). min
{j,|y−Q(G1;j ;r)|<κ2}

d

dy
G1;j(y) ≥ η2, min

{j 6=k,|y−Q(G2;j,k;r)|<κ2}

d

dy
G2;j,k(y) ≥ η2,

min
{j 6=k,|y−Q(G3;j,k;r)|<κ2}

d

dy
G3;j,k(y) ≥ η2.

Provided that Assumption (A2) holds, we have the following theorem. It gives the rate of conver-

gence for R̂Q;r with regard to the element-wise supremum norm.

Theorem 5.6 (gQNE concentration). Suppose that Assumption (A2) holds and κ2 is lower bounded

by a positive absolute constant. Then we have, for n large enough, with probability no smaller

than 1− 8α,

||R̂Q;r −RQ;r||max ≤

max
{ 2

η2
2

(√2 log d+ log(1/α)

n
+

1

n

)2
,
2
√
||RQ;r||max

η2

(√2 log d+ log(1/α)

n
+

1

n

)}
.

In particular, when X is pair-elliptically distributed with the covariance matrix Σ existing, we

have, with probability no smaller than 1− 8α,

||R̂Q;r − cQ;rΣ||max ≤

max
{ 2

η2
2

(√2 log d+ log(1/α)

n
+

1

n

)2
,
2
√
||cQ;rΣ||max

η2

(√2 log d+ log(1/α)

n
+

1

n

)}
.

Similar to Theorem 5.5, when κ2, η2, ||Σ||max, and cQ;r are upper and lower bounded by positive

absolute constants, the convergence rate of R̂Q;r is OP (
√

log d/n). Theorems 5.5 and 5.6 imply

that, under the pair-elliptical family, the quantile-based estimators R̂M;r and R̂Q;r can be good

alternatives to the sample covariance matrix.

Remark 5.7. Consider the Gaussian distribution with the diagonal values of Σ lower bounded by

an absolute constant. Then, for any fixed r ∈ (0, 1) and lower bounded κi, i = 1, 2, Assumption

(A1) and (A2) are satisfied with η−1
1 , η−1

2 = O(
√
||Σ||max). This implies that

||R̂M;r−cM;rΣ||max =OP

(
||Σ||max

√
log d/n

)
and ||R̂Q;r−cQ;rΣ||max =OP

(
||Σ||max

√
log d/n

)
.

Let R̃M;r and R̃Q;r be the solutions to (4.4). According to Lemma 4.1, we can also establish

the concentration for R̃M;r and R̃Q;r.
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Corollary 5.8. Under Assumptions (A1) and (A2), we have with probability no smaller than

1− 24α2,

||R̃M;r −RM;r||max ≤

max
{ 3

η2
1

(√ log d+ log(1/α)

n
+

1

n

)2
,
2
√
||RM;r||max

η1

(√ log d+ log(1/α)

n
+

1

n

)}
;

and with probability no smaller than 1− 8α,

||R̃Q;r −RQ;r||max ≤

max
{ 1

η2
2

(√2 log d+ log(1/α)

n
+

1

n

)2
,

√
||RQ;r||max

η2

(√2 log d+ log(1/α)

n
+

1

n

)}
.

6 Selection of the Parameter r

Theorems 5.5 and 5.6 show that the estimation accuracy of gMAD and gQNE estimators depends

on the selection of the parameter r. In particular, the estimation error in estimating RM;r and RQ;r

is related to η1, η2 and cM;r, cQ;r. On the other hand, r determines the breakdown points of RM;r

and RQ;r. Accordingly, the parameter r reflects the tradeoff between efficiency and robustness.

This section focuses on selecting the parameter r. The idea is to explore the parameter r

that makes the corresponding estimator attain the highest statistical efficiency. Using Theorems

5.5 and 5.6, we have ||R̂M;r/cM;r − Σ||max and ||R̂Q;r/cQ;r − Σ||max are small when η1

√
cM;r and

η2

√
cQ;r are large. Therefore, we aim at finding a parameter r such that the first derivatives of

{F̄1;j , F̄2;j,k, F̄3;j,k} or {G1;j , G2;j,k, G3;j,k} in a small interval around r times
√
cM;r or

√
cQ;r is the

highest.

To this end, we separately estimate the derivatives and the scale parameters
√
cM;r and

√
cQ;r.

First, we estimate the derivatives of {F̄1;j , F̄2;j,k, F̄3;j,k} or {G1;j , G2;j,k, G3;j,k} using the kernel

density estimator (Tsybakov, 2009). For example for calculating the derivate of F̄1;j , we propose

to use the data points:

|X1j − Q̂({Xij}ni=1, 1/2)|, |X2j − Q̂({Xij}ni=1, 1/2)|, . . . , |Xnj − Q̂({Xij}ni=1, 1/2)|.

After obtaining the density estimators
{
f̂1;j , f̂2;j,k, f̂3;j,k

}
or {ĝ1;j , ĝ2;j,k, ĝ3;j,k}, we calculate the

estimators ĉM;r and ĉQ;r of cM;r and cQ;r by comparing the scale of the standard deviation and

its robust alternative (either gMAD or gQNE) for any chosen entry. We denote the empirical

cumulative densities to be { ̂̄F 1;j ,
̂̄F 2;j,k,

̂̄F 3;j,k} and {Ĝ1;j , Ĝ2;j,k, Ĝ3;j,k}. We also denote their inverse

function as { ̂̄F−1

1;j ,
̂̄F−1

2;j,k,
̂̄F−1

3;j,k} and {Ĝ−1
1;j , Ĝ

−1
2;j,k, Ĝ

−1
3;j,k}.

In the end, we define the statistics

qM;r =
√
ĉM;r min

j,k

{
f̂1;j

(̂̄F−1

1;j (r)
)
, f̂2;j,k

(̂̄F−1

2;j,k(r)
)
, f̂3;j,k

(̂̄F−1

3;j,k(r)
)}
,

qQ;r =
√
ĉQ;r min

j,k

{
ĝ1;j(Ĝ

−1
1;j (r)), ĝ2;j,k(Ĝ

−1
2;j,k(r)), ĝ3;j,k(Ĝ

−1
2;j,k(r))

}
.
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(C) Gaussian and gQNE (D) multivariate t and gQNE
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Figure 4: The plot of the averaged estimation accuracy for the gMAD and gQNE estimators (with r = 0.25

to 0.95 and a selected r using the procedure described in Section 6). The distances are calculated based

on the || · ||max norm and are plotted against the dimension d ranging from 2 to 100. Here the n = 50

observations are coming from standard Gaussian or multivariate t distributed data with dimension d. The

results are obtained based on 200 repetitions.
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The estimators r̂M and r̂Q are then obtained as:

r̂M := Truncate
(

arg max
r∈[0,1]

qM;r; δ1, δ2

)
, r̂Q := Truncate

(
arg max
r∈[0,1]

qQ;r; δ1, δ2

)
, (6.1)

where δ1, δ2 are two pre-defined constants and for any v ∈ [0, 1], we write

Truncate(v; δ1, δ2) :=


δ1, if v ≤ δ1,

v, if δ1 < v < δ2,

δ2, if v ≥ δ2.

Here we control the range of r ∈ [δ1, δ2]. This is for making the procedure robust and stable.

Based on the empirical results, we recommend setting δ1 = 0.25 and δ2 = 0.75. In practice, we can

also compare different values of qM;r and qQ;r, and then choose one that achieve the best balance

between estimation accuracy and robustness.

To illustrate the power of the proposed selection procedure, let’s consider the following cases:

Each time we randomly draw n = 50 i.i.d. standard Gaussian or multivariate t (with degrees of

freedom 5) distributed data points with dimension d ranging from 2 to 100. We explore the gMAD

and gQNE estimators with different quantile parameter r and scale all the scatter matrices such

that their population versions are the covariance matrix. We repeat the experiments for 200 times.

Figure 4 illustrates the averaged estimation errors with regard to the || · ||max norm. It shows that

the procedure using the selected parameter r has the averagely smallest estimation error.

7 Applications

We now turn to various consequences of Theorems 5.5 and 5.6 in conducting multiple multivariate

statistical methods in high dimensions. We mainly focus on the methods based on the gQNE

estimator, while noting that the analysis for the methods based on the gMAD estimator is similar.

7.1 Sparse Covariance Matrix Estimation

We begin with estimating the sparse covariance matrix in high dimensions. Suppose we have

X1,X2, . . . ,Xn
i.i.d.∼ X ∈ Rd with covariance matrix Σ.

Our target is to estimate the covariance matrix Σ itself. Pearson’s sample covariance matrix

performs poorly in high dimensions (Bai and Yin, 1993; Johnstone, 2001). One common remedy is

to assume that the covariance matrix is sparse. This motivates different regularization procedures

(Bickel and Levina, 2008b; El Karoui, 2008; Rothman et al., 2009; Cai et al., 2010; Xue et al., 2012;

Liu et al., 2013).

We focus on the method in Xue et al. (2012) to illustrate the power of quantile-based statistics.

This method directly produces a positive definite estimator and does not require any extra structure

for the covariance matrix except for sparsity. The model we focus on is:

MCOV−Q(Σ; s) := {X ∈MQ(Σ) : λd(Σ) > 0 and card({(j, k) : Σjk 6= 0, j 6= k}) ≤ s}.
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Motivated by the above model, we solve the following optimization equation for obtaining the

estimator Σ̃:

Σ̃ = arg min
M=MT

1

2
||Σ̂−M||2F + λ

∑
j 6=k
|Mj,k|, subject to λd(M) ≥ ε, (7.1)

where Σ̂ can be any positive semidefinite matrix based on the quantile-based scatter matrix esti-

mator for approximating the covariance matrix, λ is a tuning parameter inducing sparsity, and ε is

a small enough constant. Here we focus on using the gQNE estimator for generating the positive

semidefinite matrix Σ̂. For estimating the covariance instead of the scatter matrix, we need an

extra efficient estimator of the scale parameter cQ;r. Here cQ;r is described in Theorem 5.2. When

the exact distribution of the pair-elliptical is known, the value cQ;r could be theoretically calculated

using (5.3). On the other hand, when the exact distribution is unknown, we note that estimating

cQ;r is equivalent to estimating the marginal standard deviation for at least one entry Xj of X.

The proposed procedure then is in four steps:

1. Calculate the positive semidefinite matrix R̃Q;r:

R̃Q;r := arg min
R�0

||R− R̂Q;r||max. (7.2)

Equation (7.2) can be solved by a matrix maximum norm projection algorithm. See Supple-

mentary Material Section D for details.

2. Choose the j-th entry with the lowest empirical fourth centered moments and use the sample

standard deviation σ̂j to estimate σ(Xj).

3. Estimate cQ;r by R̂Q;r
jj /σ̂

2
j , and estimate Σ by

Σ̂Q;r =
σ̂2
j

R̂Q;r
jj

· R̃Q;r. (7.3)

4. Produce the final sparse matrix estimator Σ̃Q;r by plugging Σ̂Q;r into (7.1):

Σ̃Q;r = arg min
M=MT

1

2
||Σ̂Q;r −M||2F + λ

∑
j 6=k
|Mj,k|, subject to λd(M) ≥ ε,

where we prefix ε to be 10−5 as recommended in Xue et al. (2012).

We then provide the statistical properties of the quantile-based estimator Σ̃Q;r as follows.

Corollary 7.1. Suppose that X1, . . . ,Xn are n independent observations of X ∈MCOV−Q(Σ; s)

and the assumptions in Theorem 4.2 hold. We denote

ζ := max
{ 4

η2
2

(√4 log d+ log(1/α)

n
+

1

n

)2
,
4
√
||cQ;rΣ||max

η2

(√4 log d+ log(1/α)

n
+

1

n

)}
,

and

ζj := max
{ 2

η2
2

(√ log(1/α)

n
+

1

n

)2
,
2
√
cQ;rΣjj

η2

(√ log(1/α)

n
+

1

n

)}
.
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(i) We have, with probability no smaller than 1− 8α,

||R̃Q;r −RQ;r||max ≤ ζ. (7.4)

(ii) If EX4
j ≤ K for some absolute constant K, then there exists an absolute constant c1 only

depending on K, such that when n is large enough, with probability no smaller than 1−n−2ξ−12α,

||Σ̂Q;r −Σ||max ≤
(c1n

−1/2+ξ

RQ;r
jj − ζj

+
1

cQ;r
· ζj

RQ;r
jj − ζj

)
· (||RQ;r||max + ζ) +

ζ

cQ;r
. (7.5)

(iii) If λ takes the same value as the right-hand side of (7.5), then with probability no smaller than

1− n−2ξ − 12α, we have

||Σ̃Q;r −Σ||F ≤ 5λ(s+ d)1/2.

In the following, for notation simplicity, we denote

ψ(r, j, ξ, α) :=
(c1n

−1/2+ξ

RQ;r
jj − ζj

+
1

cQ;r
· ζj

RQ;r
jj − ζj

)
· (||RQ;r||max + ζ) +

ζ

cQ;r
. (7.6)

Corollary 7.1 shows that, when η1, c
Q;r, ||Σ||max, and minj Σjj are upper and lower bounded by

positive absolute constants, via picking λ > ψ(r, j, ξ, α) = O(
√

log d/n), Σ̃Q;r approximates Σ in

the rate

||Σ̃Q;r −Σ||F = OP

(√(s+ d) log d

n

)
,

which is the minimax optimal rate shown in Cai and Zhou (2012b) and the parametric rate obtained

in Xue et al. (2012).

Remark 7.2. Following the steps introduced in this section, we could similarly calculate R̃Q;r,

Σ̂Q;r, and Σ̃Q;r for the gMAD estimator R̂Q;r.

Remark 7.3. For handling heavy tailed data, the quantile-based and rank-based methods are in-

trinsically different. The rank-based estimator first calculates the correlation matrix, then estimate

the d marginal variances via employing Catoni’s M-estimator. However, for the quantile-based

estimator, as (7.3) shows, we only need to estimate one marginal variance. Moreover, the tuning

in Catoni M-estimator is unnecessary.

7.2 Inverse Covariance Matrix Estimation

This section studies estimating inverse covariance matrix. Suppose X1,X2, . . . ,Xn are i.i.d. copies

of X ∈ Rd with covariance matrix Σ. We are interested in estimating the precision matrix Θ :=

Σ−1. Precision matrix is closely related to graphical models and has been widely studied in the

literature: Meinshausen and Bühlmann (2006) propose a neighborhood pursuit method; Yuan and

Lin (2007), Friedman et al. (2008), Banerjee et al. (2008), and Lam and Fan (2009) apply penalized

likelihood methods to obtain the estimators; Yuan (2010) and Cai et al. (2011) propose graphical

Dantzig selector and CLIME estimator; Xue and Zou (2012) and Liu et al. (2012a,b) generalize

the Gaussian graphical model to the nonparanormal distribution, and Liu et al. (2012b) further

generalize it to the transelliptical distribution.
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In this section, we plug the covariance estimator Σ̂Q;r in (7.3) into the formulation of CLIME

proposed by Cai et al. (2011) and obtain the precision matrix estimator:

Θ̂Q;r = arg max
Θ∈Rd×d

∑
j,k

|Θjk|, subject to ‖Σ̂Q;rΘ− Id‖max ≤ λ. (7.7)

The CLIME estimator in (7.7) can be reformulated as d linear programming (Cai et al., 2011). Let

A be a symmetric matrix. For q ∈ [0, 1), we define ‖A‖q,∞ := maxi
∑

j |Aij |q. Considering the set

Sd(q, s,M) := {Θ : ‖Θ‖1,∞ ≤M and ‖Θ‖q,∞ ≤ s},

the following result gives the estimation accuracy of the precision matrix.

Corollary 7.4. Assume that Θ = Σ−1 ∈ Sd(q, s,M) for some q ∈ [0, 1) and the tuning parameter

in (7.7) satisfies

λ ≥ ‖Θ‖1,∞ψ(r, j, ξ, α),

where ψ(r, j, ξ, α) is defined in (7.6). Then there exist constants C1, C2 such that

‖Θ̂Q;r −Θ‖2 ≤ C1sλ
1−q, ‖Θ̂Q;r −Θ‖max ≤ ‖Θ‖1,∞λ and ‖Θ̂Q;r −Θ‖2F ≤ C2sdλ

2−q.

If η1, c
Q;r, ||Σ||max, and minj Σjj are all upper and lower bounded by absolute constants, we

choose λ = O(
√

log d/n), and Corollary 7.4 gives us the rate

‖Θ̂Q;r −Θ‖2 = OP

(
s
( log d

n

) 1−q
2
)
, ‖Θ̂Q;r −Θ‖max = OP

(√ log d

n

)
,

and
1

d
‖Θ̂Q;r −Θ‖2F ≤ OP

(
s
( log d

n

) 2−q
2
)
.

According to the minimax estimation rate of precision matrix estimators established in Cai

et al. (2014), the estimation rates in terms of all the above three matrix norms are optimal.

7.3 Sparse Principal Component Analysis

In this section we consider conducting principal component analysis (PCA) and sparse PCA. Recall

that in (sparse) principal component analysis, we have

X1,X2, . . . ,Xn
i.i.d.∼ X ∈ Rd with covariance matrix Σ,

and our target is to estimate the eigenspace spanned by the m leading eigenvectors u1, . . . ,um
of Σ. The conventional PCA uses the leading eigenvectors of the sample covariance matrix for

estimation. In high dimensions where d can be much larger than n, a sparsity constraint on

u1, . . . ,um is sometimes recommended (Johnstone and Lu, 2009), motivating a series of methods

referred to as sparse PCA.

In this section, let Um := (u1, . . . ,um) ∈ Rd×m represent the combination of eigenvectors of

interest. We aim to estimate the projection matrix Πm := UmUT
m. The model we focus on is:

MPCA−Q(Σ; s,m) :=
{
X ∈MQ(Σ) :

d∑
j=1

I
( m∑
k=1

u2
kj 6= 0

)
≤ s, λm(Σ)− λm+1(Σ) > 0

}
,
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where ukj is the j-th entry of uk and λm(Σ) is the m-th largest eigenvalue of Σ. Motivated from

the above model, via exploiting the gQNE estimator, we propose the quantile-based (sparse) PCA

estimators (Q-PCA) as the optimum to the following Fantope projection problem (Vu et al., 2013):

Π̂Q;r
m = arg max

Π∈Rd×d
Tr(ΠT R̂Q;r)− λ‖Π‖1,1, subject to 0 � Π � Id and Tr(Π) = m, (7.8)

where ‖Π‖1,1 =
∑

1≤j,k≤d |Πjk| and A � B implies B − A is a positive semidefinite matrix.

Intrinsically Π̂Q;r
m is the estimator of the eigenspace spanned by the m leading eigenvectors of RQ;r.

Because the scatter matrix shares the same eigenspace with the covariance matrix, under the model

MPCA-Q(Σ; s,m), Π̂Q;r
m is also an estimator of Πm. We then have the following corollary, stating

that the Q-PCA estimator achieves the parametric rate of convergence in estimating Πm under the

model MPCA-Q(Σ; s,m).

Corollary 7.5. Suppose thatX1, . . . ,Xn are n independent observations ofX ∈MPCA−Q(Σ; s,m)

and the assumptions in Theorem 5.6 hold. If the tuning parameter in (7.8) satisfies λ ≥ ψ(r, j, ξ, α)

(reminding that ψ(r, j, ξ, α) is defined in (7.6)), we have

‖Π̂Q;r
m −Πm‖F ≤

4sλ

λm(Σ)− λm+1(Σ)
.

Corollary 7.5 shows that, under appropriate conditions, the convergence rate of the Q-PCA

estimator is OP (s
√

log d/n), which is the parametric rate in Vu et al. (2013).

7.4 Discriminant Analysis

In this section, we consider the linear discriminant analysis for conducting high dimensional classi-

fication (Guo et al., 2005; Fan and Fan, 2008; Shao et al., 2011; Cai and Liu, 2011; Fan et al., 2012;

Han et al., 2013). Let data points (X1, Y1), . . . , (Xn, Yn) be independently drawn from a joint dis-

tribution of (X, Y ), where X ∈ Rd and Y ∈ {1, 2} is the binary label. We denote I1 = {i : Yi = 1},
I2 = {i : Yi = 2}, and n1 = |I1|, n2 = |I2|. Define π = P(Y = 1), µ1 = E(X | Y = 1),

µ2 = E(X | Y = 2), Σ = Cov(X | Y = 1) = Cov(X | Y = 2). If the classifier is defined as

h(x) = I(f(x) < c) + 1 for some function f and constant c, we measure the quality of classification

by employing the Rayleigh quotient (Fan et al., 2013a):

Rq(f) =
Var{E[f(X) | Y ]}

Var{f(X)− E[f(X) | Y ]}
.

For the linear functions f(x) = βTx + c, the Rayleigh quotient has the formulation

Rq(β) = π(1− π)
[βT (µ1 − µ2)]2

βTΣβ
.

The Rayleigh quotient is minimized when β = β∗ = Σ−1(µ1 − µ2). When X|(Y = 1) and

X|(Y = 2) are multivariate Gaussian distribution, it matches the Fisher’s linear discriminant rule

hF(x) = I(xTβ∗ + c∗) + 1, where c∗ = (µ1 + µ2)Tβ∗/2. In order to estimate β∗ and c∗, we apply

the estimator proposed in Cai and Liu (2011):

β̂Q;r = arg max
β∈Rd

‖β‖1, subject to ‖Σ̂Q;rβ − (µ̂1 − µ̂2)‖max ≤ λ, (7.9)
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where µ̂1, µ̂2 are some estimators of µ1,µ2.

In the following, we suggest two kinds of estimators of the mean vectors. For simplicity, we

only describe the estimator for µ1 and similar procedures can also be applied to estimate µ2.

Suppose that X1, . . . ,Xn1 correspond to Y = 1. The first estimator for µ1 is the sample median

µ̂M = (µ̂M1, . . . , µ̂Md)
T where

µ̂Mj = median({X1j , . . . ,Xn1j}).

Due to the Hoeffding’s inequality, we can derive that there exists some constant cm that P(|µ̂Mj −
µj | > cm

√
log(1/δ)/n) ≤ δ for any j = 1, . . . , d.

Catoni (2012) proposes an alternative M-estimator for µ1. Considering a strictly increasing

function h such that − log(1− y + y2/2) ≤ h(y) ≤ log(1 + y + y2/2) and some δ ∈ (0, 1) satisfying

n > 2 log(1/δ), v ≥ max{σ2
1, . . . , σ

2
d}, we define

α2
δ =

2 log(1/δ)

n1

(
v + 2v log(1/δ)

n−2 log(1/δ)

) .
The estimator µ̂C = (µ̂C1, . . . , µ̂Cd)

T is obtained by solving the equation:

n1∑
i=1

h(αδ(xij − µ̂Cj)) = 0.

It is shown in Catoni (2012) that there exists some constant C such that with probability at least

1 − (n ∨ d)−1, P
(
‖µ̂Cj − µCj‖2 ≥ 2v log(1/δ)

n−2 log(1/δ)

)
≤ δ for all j = 1, . . . , d. By union bound, for both

estimators we have

‖µ̂M − µ1‖∞ ∨ ‖µ̂C − µ1‖∞ = OP

(√ log d

n

)
. (7.10)

Therefore, we have the following result on how well the Rayleigh quotient of estimated classifier

can approximate the optimal one.

Corollary 7.6. We assume that n1 � n2, ∆d = (µ1 − µ2)Tβ∗ ≥ M for some constant M > 0. If

we choose the tuning parameter in (7.9) that λ ≥ ‖µ̂1 − µ̂2 − µ1 + µ2‖∞ + ψ(r, j, ξ, α)‖β∗‖1, we

have
Rq(β̂Q;r)

Rq(β∗)
≥ 1− 2M−1‖β∗‖21‖ψ(r, j, ξ, α)− 20M−1λ‖β∗‖1.

According to the rate in (7.10), if η1, c
Q;r, ||Σ||max, and minj Σjj are universally bounded from

above and below by positive absolute constants and ‖β∗‖1 is also upper bounded by a constant

independent of d and n, we choose the tuning parameter λ = O(
√

log d/n) and obtain the rate

through Corollary 7.6 as

Rq(β̂Q;r)

Rq(β∗)
≥ 1−O

(√ log d

n

)
.

The above result matches the parametric rate in Cai and Liu (2011).
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8 Experiments

This section compares the empirical performance of quantile-based estimators to these based on

the Pearson, Kendall’s tau, and Spearman’s rho covariance estimators for both synthetic and real

data. Since for synthetic data analysis, conducting inverse covariance estimation and sparse PCA

has reflected the quality of matrix estimation very well, these two methods are the main focus

for synthetic data. For the real data, on the other hand, we aim to apply our methods to the

classification of genomic data.

8.1 Synthetic Data

This section focuses on conducting inverse covariance matrix estimation and sparse PCA. Let

{σ̂1, . . . , σ̂d} be the sample standard deviations ofX. Let ŜP, ŜK and ŜS be the Pearson’s, Kendall’s

tau and Spearman’s rho sample correlation matrices. We compare Σ̂Q,r and Σ̂M,r introduced in

Section 7.14 to three covariance matrix estimators:

1. Pearson’s sample covariance matrix: Σ̂P
ij = σ̂iσ̂jŜ

P
ij , for i, j = 1, . . . , d.;

2. Kendall’s tau covariance matrix: Σ̂K
ij = σ̂iσ̂jŜ

K
ij , for i, j = 1, . . . , d.;

3. Spearman’s rho covariance matrix: Σ̂S
ij = σ̂iσ̂jŜ

S
ij , for i, j = 1, . . . , d.

Moreover, given a covariance matrix Σ, we consider the following three schemes for data generation:

Scheme 1: X1, . . . ,Xn are i.i.d. copies of X ∼ Nd(0,Σ);

Scheme 2: X1, . . . ,Xn are i.i.d. copies of X following the multivariate t-distribution with the

degree of freedom 5 and Cov(X) = Σ;

Scheme 3: X1, . . . ,Xn are i.i.d. copies of X ∼ Nd(0,Σ), but with randomly sampled 10% of

data points replaced by i.i.d. copies of the mixture Gaussian 0.5N(3, 3) + 0.5N(−3, 3).

In the following, we plug the five covariance matrix estimators into the inverse covariance

estimation procedure discussed in Section 7.2 and the sparse PCA procedure in Section 7.3.

8.1.1 Inverse Covariance Matrix Estimation

We consider the numerical performance using the setting in Cai et al. (2011). Let Ω = (ωij)1≤i,j≤d :=

Σ−1 represent the inverse covariance matrix. We consider Ω = B + δId. Each off-diagonal entry

of B is independent and of the value 0.5 with probability 0.1 and the value 0 with probability 0.9.

The value δ is chosen such that the condition number of Ω is d. The diagonal of Σ is renormalized

to be ones.

We generate the data under the three schemes with dimensions d = 90, 120, 200, sample size

n = 100, and repetition time 100. We measure the estimation error by Frobenius norm ‖Σ̂−Σ‖F.

The numerical results are presented in Table 1.

4Here the parameter r is set as in Section 6 with δ1 and δ2 to be 0.25 and 0.75.
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Table 1: Comparison of the gMAD, gQNE, Pearson’s, Kendall’s tau and Spearman’s rho covariance

estimators combined with the CLIME and sparse PCA (SPCA) algorithms. The estimation errors

of CLIME estimators are in terms of Frobenius norms. The estimation errors of SPCA estimators

are in terms of ‖Π̂1−Π1‖F. The errors are averaged over 100 repetitions with standard deviations

in the parentheses.

Scheme 1 Scheme 2 Scheme 3

d 100 200 500 100 200 500 100 200 500

C
L

IM
E

gMAD
5.47 6.29 8.82 7.73 9.06 11.09 6.83 7.70 9.48

(0.22) (0.28) (0.60) (0.64) (0.80) (0.92) (0.24) (0.27) (0.30)

gQNE
4.75 5.42 7.53 7.58 8.76 10.95 6.84 7.59 9.41

(0.20) (0.19) (0.22) (0.68) (0.79) (1.03) (0.22) (0.27) (0.30)

Pearson
4.75 5.38 7.39 7.77 8.95 11.37 7.25 8.02 9.76

(0.22) (0.22) (0.26) (0.82) (1.05) (1.45) (0.12) (0.15) (0.12)

Kendall
5.38 6.35 8.84 8.47 10.01 13.34 7.58 8.80 11.83

(0.23) (0.25) (0.29) (0.55) (0.62) (0.66) (0.13) (0.15) (0.16)

Spearman
4.86 5.49 7.60 7.99 9.17 11.33 7.18 7.97 9.52

(0.20) (0.20) (0.30) (0.64) (0.78) (1.04) (0.14) (0.19) (0.21)

S
P

C
A

gMAD
0.35 0.41 0.48 0.48 0.53 0.60 0.42 0.51 0.55

(0.23) (0.27) (0.26) (0.25) (0.25) (0.27) (0.24) (0.25) (0.23)

gQNE
0.19 0.25 0.34 0.37 0.43 0.47 0.42 0.48 0.55

(0.16) (0.24) (0.26) (0.26) (0.26) (0.29) (0.25) (0.25) (0.24)

Pearson
0.17 0.20 0.31 0.78 0.80 0.91 0.80 0.85 0.84

(0.14) (0.20) (0.28) (0.27) (0.23) (0.16) (0.17) (0.13) (0.11)

Kendall
0.20 0.23 0.32 0.45 0.53 0.58 0.53 0.61 0.69

(0.15) (0.20) (0.28) (0.30) (0.28) (0.30) (0.23) (0.22) (0.21)

Spearman
0.21 0.25 0.34 0.46 0.54 0.57 0.53 0.61 0.70

(0.16) (0.23) (0.28) (0.32) (0.28) (0.29) (0.23) (0.22) (0.21)

8.1.2 Sparse PCA

We use the setting in Han and Liu (2012b) to investigate the numerical performance of the sparse

principal component analysis. We consider the spike covariance Σ = λ1v1v
T
1 + λ2v2v

T
2 + Id, where

λ1 = 5 and λ2 = 2, v1j = 1/
√

10 for j = 1 ≤ j ≤ 10, v1j = 0 for j > 10 and v2j = 1/
√

10

for 11 ≤ j ≤ 20, v2j = 0 otherwise. The data sample size is n = 50 for d = 90, 120, 200 with

repetition 100 times. We measure the difference between the true projection matrix Π1 = v1v
T
1

and its estimator Π̂1 through (7.8) by the Frobenius norm ‖Π̂1 −Π1‖F. The results are given in

Table 1.
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8.1.3 Summary of Synthetic Data Results

From the numerical results summarized in Table 1, the gMAD and gQNE covariance estimators per-

form better than other estimators for both CLIME and sparse PCA under Scheme 2 and Scheme 3.

This implies that gMAD and gQNE have better performance in studying heavy-tailed distributions

and contaminated data. This is due to the advantage that only one variance is required to be

estimated in (7.3), while the other covariance estimators demand variance estimators for d covari-

ates. Moreover, gQNE outperforms gMAD estimator. This matches the assertion that gQNE is

more efficient than gMAD. Under the Scheme 1, since the synthetic data follow Gaussian distribu-

tion, the sample covariance estimator is efficient and outperforms the gMAD and gQNE covariance

estimators. However, the performance is still comparable even under this scheme.

8.2 Genomic Data Analysis

In this section, we apply the method introduced in Section 7.4 to the large-scale microarray dataset,

GPL96 (McCall et al., 2010). The dataset contains 20,263 probes with 8,124 samples belonging

to 309 tissue types. The probes correspond to 12,679 genes and we average the probes from same

genes. The tissue types include prostate tumor (148 samples), B cell lymphoma (213 samples), and

many others. The target of our real data analysis is to compare the performance of classifying the

prostate tumor from the B cell lymphoma by using gMDA, gQNE, and other estimators. We only

focus on the top 1,000 genes of the largest p-values in performing the marginal two-sample t-test.

First, we consider the goodness of fit test of the pair-elliptical. Our goal is to select genes such

that their corresponding data from both tissue types are approximately pair-elliptical separately.

Then we apply the linear discriminative classifier in (7.9) to the selected genes for classification.

Specifically, let {Xi}ni=1 be the dataset corresponding to the prostate tumor. We employ the

goodness of fit test proposed in Section 3.3 by calculating the statistic Z({(Xij , Xik)}) for each

pair of 1 ≤ j 6= k ≤ d. The Holm’s adjusted p-values {πHjk}dj,k=1 are evaluated according to (3.5).

We delete any gene j if there exists another gene k such that the adjusted p-value πHjk < α = 0.05.

All the left ones are the selected genes for the prostate tumor. Same procedures are also applied to

the dataset of B cell lymphoma. The final screened genes are the intersection of the selected genes

for both categories. In the end, the number of selected genes is 225.

Figure 5 illustrates the results for the above procedure corresponding to the prostate tumor.

In detail, Figure 5(A) reports the histogram of the test statistics Z({(Xij , Xik)}) for all pairs of

genes corresponding to the prostate tumor. The curve in the figure is the density of χ2 distribution

with degrees of freedom [
√
n] − 1 = 11. Figure 5(A) shows that the empirical distribution of the

statistics is close to the χ2 distribution. Figure 5(B) illustrates the histogram of the Holm’s adjusted

p-values for all pairs of genes. Figure 5(B) shows that we do not reject the goodness of fit test of

the pair-elliptical for most pairs of genes in the dataset. We select the pair of genes with the largest

p-value and denote the pair as (j∗, k∗). Figure 5(C) reports the estimated density function of the

t-statistics from the selected pair {t((Xij∗ , Xik∗))}ni=1 versus the density of the t-distribution with

degree of freedom 1. The density function is estimated by kernel density estimator with bandwidth

h = 0.4. We see that these two distributions are close to each other.

Secondly, we plug the samples of these selected genes to the linear discriminative classifier in

(7.9). To compare the classification errors for different covariance estimators, each time we randomly
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(A) Histogram of Z({(Xij , Xik)}) (B) Histogram of {πHjk}
d
j,k=1 (C) Density of {t((Xij , Xik))}ni=1 v.s. t1
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Figure 5: (A) The histogram of Z({(Xij , Xik)}) for the pairs of genes for the prostate tumor and the curve

is the density function of χ2
11; (B) The histogram of the Holm’s adjusted p-values for the prostate tumor

and the red dashed line is the significance level α = 5%; (C) The estimated density of {t((Xij∗ , Xik∗))}ni=1

(black solid line) versus the density of t1 (red dashed line) for the pair of genes with largest p-value of the

statistic Z({(Xij , Xik)}).

Table 2: Means (standard deviations in the parentheses) of classification errors on GPL96 for

prostate tumor and B cell lymphoma by applying the gMAD, gQNE, Pearson’s, Kendall’s tau and

Spearman’s rho covariance estimators to the linear discriminative classifier with 100 replications.

gMAD gQNE Pearson Kendall Spearman

0.055 0.059 0.134 0.099 0.098

(0.003) (0.004) (0.003) (0.007) (0.005)

select 74 samples from the prostate tumor and 74 from the B cell lymphoma as the training dataset.

For the training dataset, we divide each category into two parts randomly: One is to derive the

classifiers from different covariance estimators by (7.9) and the other is for tuning the parameters

of the first part by minimizing its classification error. The rest samples are applied as the testing

dataset to calculate the final classification error. The above steps are repeated for 100 times. We

summarize the classification errors in Table 2. The errors reported in Table 2 demonstrate that

the gMAD and the gQNE estimators significantly outperform the other estimators in the GPL96

dataset. This indicates the power of quantile-based statistics in high dimensions.

9 Discussion

This paper studies estimating large scatter matrices for high dimensional data with possibly very

heavy tails. We propose a new distribution family, the pair-elliptical, for modeling such data. The

pair-elliptical is more flexible than the elliptical. We also characterize the relation between the pair-

elliptical and several popular distribution families in high dimensions. Built on the pair-elliptical

family, we advocate using the quantile-based approaches for estimating large scatter and covariance

matrices. These procedures are both statistically efficient and robust compared to their Gaussian

alternatives.
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In the future, it is of interest to investigate the performance of the quantile-based methods

when the data are not independent. Studies of moment-based and rank-based approaches under

high dimensional dependent data include Fan et al. (2013b) and Han and Liu (2013b). However,

their proof techniques cannot be directly applied to analyze the quantile-based estimators.

All the results in this paper are confined in parameter estimation and focus on nonasymptotic

analysis. In the future, we are also interested in studying the asymptotic properties of quantile-

based estimators under the regime that both d and n go to infinity.

A Supporting Lemmas

Lemma A.1. For any continuous random variable X ∈ R with the distribution function F and

any n independent observations X1, . . . , Xn of X, we have for any t > 0,

P(|Q̂({Xi}; r)−Q(X; r)| ≥ t)

≤ exp
(
− 2n[F{F−1(r) + t} − r − n−1]2

)
+ exp

(
− 2n[r − F{F−1(r)− t}]2

)
,

whenever F{F−1(r) + t} > r + n−1.

Proof. Let Fn denote the empirical distribution of X1, . . . , Xn and F−1
n (r) := Q̂({Xi}; r). By the

definition of Q̂(·; ·) in (4.1), we have for any ε ∈ [0, 1],

ε ≤ Fn(F−1
n (ε)) ≤ ε+

1

n
.

This implies that

P
{
Q̂({Xi}; r)−Q(X; r) ≥ t

}
= P

{
F−1
n (r)− F−1(r) ≥ t

}
≤ P

[
r +

1

n
≥ Fn{t+ F−1(r)}

]
= P

[ 1

n

n∑
i=1

I{Xi ≤ F−1(r) + t} ≤ r +
1

n

]
.

We have

P
[ 1

n

n∑
i=1

I{Xi ≤ F−1(r) + t} ≤ r +
1

n

]
=P
[ 1

n

n∑
i=1

I{Xi ≤ F−1(r) + t} − F{F−1(r) + t} ≤ r +
1

n
− F{F−1(r) + t}

]
.

Because EI{Xi ≤ F−1(r)+t} = P(X ≤ F−1(r)+t) = F{F−1(r)+t} and I{Xi ≤ F−1(r)+t} ∈ [0, 1]

is a bounded random variable, by Hoeffding’s inequality, we have

P
{
Q̂({Xi}; r)−Q(X; r) > t

}
≤ exp

(
− 2n[F{F−1(r) + t} − r − n−1]2

)
, (A.1)

as long as t is large enough such that F{F−1(r) + t} > r + n−1.
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On the other hand, we have

P
{
Q̂({Xi}; r)−Q(X; r) ≤ −t

}
= P

{
F−1
n (r)− F−1(r) ≤ −t

}
≤ P

[
r ≤ Fn{F−1(r)− t}

]
= P

[ 1

n

n∑
i=1

I{Xi ≤ F−1(r)− t} ≥ r
]
.

Then again, exploiting the Hoeffding’s inequality as above, we have

P
{
Q̂({Xi}; r)−Q(X; r) ≤ −t

}
≤ exp

(
− 2n[r − F{F−1(r)− t}]2

)
. (A.2)

Combining (A.1) and (A.2), we have the desired result.

Lemma A.2 (gMAD concentration inequality). Letting X ∈ R be a one dimensional continuous

random variable. We denote F1 and F2 to be the distribution functions of X and |X −Q(X; 1/2)|.
Then we have for any t > 0,

P
(
|σ̂M(X; r)− σM(X; r)| > t

)
≤ 2 exp

(
− 2n

[
F1{F−1

1 (1/2) + t/2} − 1

2
− 1

n

]2)
+

2 exp
(
− 2n

[1

2
− F1{F−1

1 (1/2)− t/2}
]2)

+ exp
(
− 2n

[
F2{F−1

2 (r) + t/2} − r − 1

n

]2)
+ exp

(
− 2n

[
r − F2{F−1

2 (r)− t/2}
]2)

,

whenever F1{F−1
1 (1/2) + t/2} − 1/2 > 1/n and F2{F−1

2 (r) + t/2} − r > 1/n.

Proof. By definition, we have for any t > 0,

P
(
σ̂M(X; r)−σM(X; r)>t

)
=P
(
Q̂
[{∣∣∣Xi−Q̂

{
{Xi};

1

2

}∣∣∣}; r
]
−Q

{∣∣∣X −Q(X;
1

2

)∣∣∣; r} > t
)
.

We denote ν := Q(X; 1/2) and ν̂ := Q̂({Xi}; 1/2). We then have

P
(
σ̂M(X; r)−σM(X; r)>t

)
= P

{
Q̂
(
{|Xi − ν̂|}, r

)
−Q

(
|X − ν|, r

)
> t
}

≤ P
{
Q̂
(
{|Xi − ν|}, r

)
+ |ν̂ − ν| −Q

(
|X − ν|, r

)
> t
}

≤ P
{
Q̂
(
{|Xi − ν|}, r

)
−Q

(
|X − ν|, r

)
> t/2

}
︸ ︷︷ ︸

A1

+ P(|ν̂ − ν| > t/2)︸ ︷︷ ︸
B

.

29



On the other hand, we have

P
(
σ̂M(X; r)−σM(X; r)<−t

)
= P

{
Q̂
(
{|Xi − ν̂|}, r

)
−Q

(
|X − ν|, r

)
< −t

}
≤ P

{
Q̂
(
{|Xi − ν|}, r

)
− |ν̂ − ν| −Q

(
|X − ν|, r

)
< −t

}
≤ P

{
Q̂
(
{|Xi − ν|}, r

)
−Q

(
|X − ν|, r

)
< −t/2

}
︸ ︷︷ ︸

A2

+ P(|ν̂ − ν| > t/2)︸ ︷︷ ︸
B

.

Using Lemma A.1, we have

B ≤ exp
(
− 2n

[
F1{F−1

1 (1/2) + t/2} − 1

2
− 1

n

]2)
+ exp

(
− 2n

[1

2
− F1{F−1

1 (1/2)− t/2}
]2)

.

Moreover, we have

A1 +A2 = P
{∣∣∣Q̂({|Xi − ν|}, r

)
−Q

(
|X − ν|, r

)∣∣∣ > t

2

}
≤ exp

(
− 2n

[
F2{F−1

2 (r) + t/2} − r − 1

n

]2)
+ exp

(
− 2n

[
r − F2{F−1

2 (r)− t/2}
]2)

,

where we remind that F1 and F2 represent the distribution functions of X and |X − Q(X; 1/2)|.
Finally, using the fact that

P
(∣∣∣σ̂M(X; r)− σM(X; r)

∣∣∣ > t
)
≤ A1 +A2 + 2B,

we have the desired result.

Lemma A.3 (gQNE concentration). Let X ∈ R be a one dimensional continuous random variable

and X̃ be an independent copy of X. Let G(·) be the distribution function of |X − X̃|. We then

have

P(|σ̂Q(X; r)− σQ(X; r)| > t)

≤ exp
(
− n[G{G−1(r) + t} − r − n−1]2

)
+ exp

(
− n[r −G{G−1(r)− t}]2

)
,

whenever G{G−1(r) + t} > r + n−1.

Proof. We denote Z := |X − X̃|. By definition, we have

P(|σ̂Q(X; r)− σQ(X; r)| > t) = P(|Q̂({|Xi −Xj |}i<j ; r)−Q(Z; r)| > t).

Similar as in the proof of Lemma A.1, we have

P
{
Q̂({|Xi −Xj |}i<j ; r)−Q(Z; r) ≥ t

}
≤ P

[ 2

n(n− 2)

∑
i<j

I{|Xi −Xj | ≤ G−1(r) + t} ≤ r +
1

n

]
.
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By Hoeffding’s inequality in U-statistics (c.f., Equation (5.7) in Hoeffding (1963)), we have

P
{
Q̂({|Xi −Xj |}i<j ; r)−Q(Z; r) > t

}
≤ exp

(
− n[G{G−1(r) + t} − r − n−1]2

)
, (A.3)

where we remind that G represents the distribution function of Z. Similarly, we have

P
{

(Q̂({|Xi −Xj |}i<j ; r)−Q(Z; r) ≤ −t
}
≤ exp

(
− n[r −G{G−1(r)− t}]2

)
. (A.4)

Combining (A.3) and (A.4), we have the desired result.

B Proof of Main Results

B.1 Proof of Propositions 3.7, 3.8, and 3.9

Proof of Proposition 3.7. Consider a pair-elliptically distributed random vectorX = (X1, . . . , Xd)
T

∼ PEd(µ,S, ξ1). If X is also transelliptically distributed, by definition, there exists a set of

univariate strictly increasing functions f = {fj}dj=1 such that f(X) := (f1(X1), . . . , fd(Xd))
T ∼

ECd(0,Σ
0, ξ2) for some generating variable ξ2. Because X has the same Kendall’s tau correlation

matrix as f(X), without loss of generality, we can assume S = Σ0. Accordingly, the margins of

X follow the same distribution. Combined with the fact that the margins of f(X) are identically

distributed, we have the transformation functions f1 = f2 = · · · = fd = f0. The desired result

follows by considering the following two cases. If |Σ0
jk| = 1 for all j, k ∈ {1, . . . , d}, then we

have X1 = (±)X2 = · · · = (±)Xd almost surely. This, combined with the fact that X are pair-

elliptically distributed, implies that X is elliptical distributed. Otherwise, if there exists j 6= k such

that |Σ0
jk| ∈ (0, 1), then without loss of generality, we assume j = 1, k = 2 and let ρ := Σ0

12 6= 0.

Because (X1, X2)T is elliptically distributed, we then have

X2|X1 = X1 ∼ EC1(ρX1, 1− ρ2, ξ′1), for some generating variable ξ′1,

which implies that

median(X2|X1 = X1) = ρX1 and median(f0(X2)|f0(X1) = f0(X1)) = f0(ρX1). (B.1)

On the other hand, because (f0(X1), f0(X2))T is elliptically distributed, we also have

f0(X2)|f0(X1) = f0(X1) ∼ EC1(ρf0(X1), 10ρ2, ξ′2), , for some generating variable ξ′2,

which implies that

median(f0(X2)|f0(X1) = f0(X1)) = ρf0(X1). (B.2)

Combining Equations (B.1) and (B.2), we have for all X1 ∈ R, f0(ρX1) = ρf0(X1), implying

that f0(x) = ax for some a ∈ R. This further implies that X ∼ ECd(0, a
2Σ0, ξ2) is elliptically

distributed.
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Proof of Proposition 3.8. By definition, any pair in Y satisfies

(Yj , Yk)
T D

= ξGAU ∼ N2(µ{j,k},S{j,k},{j,k}),

where q = rank(S{j,k},{j,k}), A ∈ R2×q with AAT = S{j,k},{j,k}, U ∈ Rq uniformly distributed in

Sq−1, and ξ2
G follows a chi square distribution with degree of freedom q. This further implies that

any pair in X satisfies

(Xj , Xk)
T = ξ(Yj , Yk)

T ∼ ξ · ξG ·AU ,

and accordingly is elliptically distributed. This verifies that X is pair-elliptically distributed.

Proof of Proposition 3.9. Because the margin of a pair-normal is normally distributed and the only

elliptical distribution that has normal margins is the Gaussian, we have the first assertion is true.

We then prove the second assertion. Suppose that Y = (Y1, . . . , Yd)
T is pair-normally as well as

nonparanormlly distributed. Then for any j ∈ {1, . . . , d}, Yj is normally distributed. Moreover,

because Y is nonparanoramlly distributed, we have fj(Yj) ∼ N(0, 1). This implies that fj is a

linear transformation. Therefore, Y is Gaussian distributed because f1, . . . , fd are linear.

B.2 Proofs of Lemma 4.1

Proof. Since R̃ is the minimizer of (4.4), we have

‖R̃− R̂‖ ≤ ‖R̃− R̂‖,

which implies P(‖R̃−R‖ ≥ t) ≤ P(‖R̃− R̂‖+ ‖R̂−R‖ ≥ t) ≤ P(‖R̂−R‖ ≥ t).

B.3 Proofs of Theorems 2.1

Proof of Theorem 2.1. Let X1, . . . ,Xn be n independent observations of X ∈ Rd with Xi =

(Xi1, . . . , X
T
id). By Chebychev’s inequality, we have

P(|Xij | ≥ t) ≤ (t/||Xij ||Lp)−p.

Let’s cut Xij into two parts:

Yij = Xij 1(|Xij | ≥ ε) and Y ∗ij = Xij 1(|Xij | ≤ ε).

We have |Y ∗ij − EY ∗ij | is upper bounded by 2ε and its variance has the property:

Var(Y ∗ij) ≤ E(Y ∗ij)
2 ≤ ||Xij ||2L2

≤ ||Xij ||2Lp = K2.

Accordingly, by Bernstein’s inequality, we have

P
( 1

n
(
∑

Y ∗ij − EY ∗ij) > t/2
)
≤ exp

(
− 1/8 · nt2

K2 + 1/3 · εt

)
.

For Yij , we have

P(Yij 6= 0) = P(|Xij | ≥ ε) ≤ (ε/K)−p,
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and

|EYij | = |EXij 1(|Xij | ≥ ε)| ≤
E|Xij |p

εp−1
=

Kp

εp−1
.

Accordingly, for any ε such that

Kp/εp−1 ≤ t/2, (B.3)

we have for any j ∈ {1, . . . , d},

P
(∣∣∣ 1
n

∑
Xij − µj

∣∣∣ > t
)
≤P
( 1

n

∣∣∣∑(Y ∗ij − EY ∗ij)
∣∣∣ > t/2

)
+ P

(∣∣∣ 1
n

∑
(Yij − EYij)

∣∣∣ > t/2
)

≤2 exp
(
− 1/8 · nt2

K2 + 1/3 · εt

)
+ nP(Yij 6= 0)

≤2 exp
(
− 1/8 · nt2

K2 + 1/3 · εt

)
+ n(ε/K)−p.

This yields that

P(||µ̄− µ||∞ > t) ≤d · P
(∣∣∣ 1
n

∑
Xij − µj

∣∣∣ > t
)

≤d ·
(

2 exp
(
− 1/8 · nt2

K2 + 1/3 · εt

)
+ n(ε/K)−p

)
.

Taking t = 12K ·
√

log d/n and ε = K ·
√
n/(log d), as long as log d/n = o(1), we have

2d exp
(
− 1/8 · nt2

K2 + 1/3 · εt

)
≤ 2d−2.5.

It is also straightforward to verify that for such chosen t and ε, we have Kp/εp−1 ≤ t/2 as long as

p ≥ 2.

For the second term, we have

log(nε−p ·Kp) = log n− p log ε+ p logK

= log n− p(logK + 1/2 log n− 1/2 log log d)) + p logK

=(−p/2 + 1) log n+ p/2 log log d.

So for large enough p and K, we need to have

log d+ (−p/2 + 1) log n+ p/2 log log d→ −∞.

Thus, letting p = 2 + 2γ + δ, for d = O(nγ), with probability no smaller than 1 − 2d−2.5 −
(log d)p/2n−δ/2, we have

||µ̄− µ||∞ ≤ 12K

√
log d

n
.

This completes the proof.
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Proof of Theorem 2.2. Consider the distribution X = (X1, . . . , Xd) with X1, . . . , Xd independent

and identically distributed. For reasons that will be clear later, we can set C = 1 and consider

P(X1 =
√
n log d) =

1

2
(n log d)−p/2, P(X1 = −

√
n log d) =

1

2
(n log d)−p/2,

and P(X1 = 0) = 1− (n log d)−p/2. (B.4)

We then have µ = 0 and ||X1||Lq → I(q = p) +∞ · I(q > p). Moreover, letting

α := P(|µ̄1| ≥
√

log d/n) ≥ 1− P(X1 = . . . = Xn = 0) ≥ n(n log d)−p/2(1 + o(1)), (B.5)

we have

P(||µ̄− µ||∞ ≥
√

log d/n) = dα− (d2)α2 + (d3)α3 − · · ·
= 1− (1− α)d.

When p = 2 + 2γ and d = nγ+δ0 with δ0 > 0 and some 0 < δ1 < δ0, we have

(1− α)d ≤
(

1− n−γ(log d)−p/2
)nγ+δ0

≤
(

1− 1

nγ+δ1

)nγ+δ0
≤ (1/e)n

δ0−δ1 → 0.

Accordingly, with probability tending to 1, we have

||µ̄− µ||∞ ≥
√

log d/n.

When C 6= 1, we can replace all terms
√
n log d in Equation (B.4) with

√
Cn log d and all the proofs

can follow.

B.4 Proofs of Theorems 5.1 and 5.2

Proof of Theorem 5.1. For j = 1, . . . , d, we denote µj := Q(Xj ; 1/2). By definition, we have for

j = 1, . . . , d,

σM(Xj ; r) = Q(|Xj −Q(Xj ; 1/2)|; r) = Q(|Xj − µj |; r).

In other words, we have

r = P{|Xj − µj | ≤ σM (Xj ; r)} = P
{ |Xj − µj |

σ(Xj)
≤ σM (Xj ; r)

σ(Xj)

}
,

because all the quantiles are unique. Accordingly, we have

σM (Xj ; r)

σ(Xj)
= Q

( |Xj − µj |
σ(Xj)

; r
)
⇒ σM (Xj ; r) = σ(Xj) ·Q

( |Xj − µj |
σ(Xj)

; r
)
.

Using a similar technique as above, we can further derive that

σM (Xj +Xk; r) = σ(Xj +Xk) ·Q
( |Xj +Xk −Q(Xj +Xk; 1/2)|

σ(Xj +Xk)
; r
)
,

and σM (Xj −Xk; r) = σ(Xj −Xk) ·Q
( |Xj −Xk −Q(Xj −Xk; 1/2)|

σ(Xj −Xk)
; r
)
.
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Therefore, RM;r = cM;rΣ if (5.1) holds and by definition

cM;r =
{σM (Xj ; r)

σ(Xj)

}2
=
{
Q
( |Xj − µj |

σ(Xj)
; r
)}2

.

This completes the proof.

Proof of Theorem 5.2. The proof of Theorem 5.2 is similar as Theorem 5.1, and is accordingly

omitted here.

B.5 Proof of Theorem 5.3

Proof. We first prove the case for the gMAD estimator RM;r. By the definition of the pair-

elliptical and the discussions in Remark 3.2, we have any pair in PEd(µ,S, ξ) can be written

as EC2(µ{j,k},S{j,k},{j,k}, φ) where φ is a properly defined characteristic function only depending

on ξ. On one hand, by Theorem 2.16 in Fang et al. (1990), we have for any j ∈ {1, . . . , d},

Xj − µj√
Sjj

∼ EC1(0, 1, φ). (B.6)

Because X is continuous (by the definition of the pair-elliptical) and accordingly all quantiles of

ECd(0, 1, ξ) are uniquely defined, using the same proof techniques as exploited in the proof of

Theorem 5.1, (B.6) shows that

RM;r
jj =

(
Q
(∣∣∣EC1(0, 1, φ)

∣∣∣; r))2
· Sjj

for any j ∈ {1, . . . , d}. On the other hand, for those j 6= k such that Sjj + Skk + 2Sjk 6= 0 and

Sjj + Skk − 2Sjk 6= 0, we have

Xj +Xk ∼ ECd(µj + µk,Sjj + Skk + 2Sjk, φ),

and Xj −Xk ∼ ECd(µj − µk,Sjj + Skk − 2Sjk, φ),

and accordingly Xj+Xk and Xj−Xk are both elliptically distributed with the same characterization

function φ. Therefore, we have

Xj +Xk −Q(Xj +Xk; 1/2)√
Sjj + Skk + 2Sjk

D
=
Xj −Xk −Q(Xj −Xk; 1/2)√

Sjj + Skk − 2Sjk
∼ EC1(0, 1, φ),

and accordingly we have∣∣∣Xj − µj√
Sjj

∣∣∣ D= ∣∣∣Xj +Xk −Q(Xj +Xk; 1/2)√
Sjj + Skk + 2Sjk

∣∣∣ D= ∣∣∣Xj −Xk −Q(Xj −Xk; 1/2)√
Sjj + Skk − 2Sjk

∣∣∣.
Thus, in parallel to the proof in Theorem 5.1, we have

RM;r
jk =

(
Q
(∣∣∣EC1(0, 1, φ)

∣∣∣; r))2
· Sjk.
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For those j 6= k ∈ {1, . . . , d} such that Sjj + Skk − 2Sjk = 0, we have Cov(Xj −Xk) = 0, implying

that Xj = Xk, a.s.. Accordingly, we have

σM(Xj , Xk; r) =
1

4
{σM(Xj +Xk; r)}2 = (σM(Xj +Xk; r))

2.

Accordingly, RM;r
jk = RM;r

jj =
(
Q
(∣∣∣EC1(0, 1, φ)

∣∣∣; r))2
· Sjj =

(
Q
(∣∣∣EC1(0, 1, φ)

∣∣∣; r))2
· Sjk. Sim-

ilarly, for those j 6= k ∈ {1, . . . , d} such that Sjj + Skk + 2Sjk = 0, we have RM;r
jk = −RM;r

jj =

−
(
Q
(∣∣∣EC1(0, 1, φ)

∣∣∣; r))2
· Sjj =

(
Q
(∣∣∣EC1(0, 1, φ)

∣∣∣; r))2
· Sjk. This completes the proof of the

first part.

Secondly, we switch to the gQNE estimator. We note that, by Remark 3.2,

E exp(itT (X{j,k} − X̃{j,k})) = φ2(tTS{j,k},{j,k}t),

and accordingly X − X̃ ∼ PEd(0, 2S, φ2) and is continuously distributed. Then by following the

same proof as in the first part we have the desired result.

In the end, let’s show the scale constant. Using the same argument as above, we have

RM;r =
(
Q
(∣∣∣X0

∣∣∣; r))2
·Σ.

Because X0 is continuous and symmetric, letting qr := Q
(∣∣∣X0

∣∣∣; r), we have

P(|X0| ≤ qr) = 2P(X0 ≤ qr)− 1 = r ⇒ P(X0 ≤ qr) =
1 + r

2
⇒ qr = Q

(∣∣∣X0

∣∣∣; 1 + r

2

)
.

Similarly, we have

RQ;r =
(
Q
(∣∣∣Z0

∣∣∣; 1 + r

2

))2
·Σ.

This finalizes the proof.

B.6 Proof of Theorem 5.5

Proof. Using Lemma A.2 and Assumption (A1), we have for any j ∈ {1, . . . , d},

P(|σ̂M(Xj ; r)− σM(Xj ; r)| > t) ≤ 3 exp(−2n(η1t/2− 1/n)2) + 3 exp(−2n(η1t/2)2),

whenever t/2 ≤ κ1 and η1t/2 > 1/n. Accordingly, we have

P(|R̂M;r
jj −RM;r

jj | > t) = P(|(σ̂M(Xj ; r) + σM(Xj ; r))(σ̂
M(Xj ; r)− σM(Xj ; r))| > t)

≤ P(|(σ̂M(Xj ; r)− σM(Xj ; r))
2 + 2σM(Xj ; r)(σ̂

M(Xj)− σM(Xj ; r))| > t)

≤ P
(
|σ̂M(Xj ; r)− σM(Xj ; r)| >

√
t

2

)
+ P

(
|σ̂M(Xj ; r)− σM(Xj ; r)| >

t

2σM(Xj ; r)

)
≤ 6 exp(−2n(η1

√
t/2/2− 1/n)2) + 6 exp(−2n(η1t/(4σ

M(Xj ; r)))
2). (B.7)
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Using Lemma A.2 and Assumption (A1), we have for any j 6= k,

P(|σ̂M(Xj +Xk; r)− σM(Xj +Xk; r)| > t) ≤ 3 exp(−2n(η1t/2− 1/n)2) + 3 exp(−2n(η1t/2)2),

and

P(|σ̂M(Xj −Xk; r)− σM(Xj −Xk; r)| > t) ≤ 3 exp(−2n(η1t/2− 1/n)2) + 3 exp(−2n(η1t/2)2).

And accordingly, letting θmax := 2
√
||RM;r||max, we have

P(|R̂M;r
jk − c

M;rΣjk| > t)

≤P(|(σ̂M(Xj +Xk; r))
2 − (σM(Xj +Xk; r))

2| > 2t)

+ P(|(σ̂M(Xj −Xk; r))
2 − (σM(Xj −Xk; r))

2| > 2t)

≤P
(
|σ̂M(Xj +Xk; r)− σM(Xj +Xk; r)| >

√
t
)

+ P
(
|σ̂M(Xj +Xk; r)− σM(Xj +Xk; r)| >

t

σM(Xj +Xk; r)

)
+ P

(
|σ̂M(Xj −Xk; r)− σM(Xj −Xk; r)| >

√
t
)

+ P
(
|σ̂M(Xj −Xk; r)− σM(Xj −Xk; r)| >

t

σM(Xj −Xk; r)

)
≤6 exp(−2n(η1

√
t/2− 1/n)2) + 6 exp(−nη2

1t/2) + 6 exp(−2n(η1t/(2θmax)− 1/n)2)

+ 6 exp(−nη2
1t

2/(2θ2
max))

≤24 max{exp(−2n(η1

√
t/2− 1/n)2), exp(−2n(η1t/(2θmax)− 1/n)2)}. (B.8)

Combining Equations (B.7) and (B.8), we have, with probability 1− 24α2,

||R̂M;r −RM;r||max ≤

max
{ 6

η2
1

(√ log d+ log(1/α)

n
+

1

n

)2

︸ ︷︷ ︸
T1

,
4
√
||RM;r||max

η1

(√ log d+ log(1/α)

n
+

1

n

)
︸ ︷︷ ︸

T2

}
,

whenever n is large enough such that T1 ≤ 8κ2
1 and T2 ≤ 2κ1 · minj 6=k{2σM(Xj ; r), σ

M(Xj +

Xk; r), σ
M(Xj−Xk; r)}. Combining the above inequality with Theorem 5.3, we complete the whole

proof.

B.7 Proof of Theorem 5.6

Proof. Using Lemma A.3 and Assumption (A2), we have for any j ∈ {1, . . . , d},

P(|σ̂Q(X; r)− σQ(X; r)| > t) ≤ exp
(
− n[η2t− 1/n]2

)
+ exp

(
− n(η2t)

2
)
,

whenever t ≤ κ2 and η2t > 1/n. Using a similar proof technique as in the proof of Theorem 5.5,

we have

P(|R̂Q;r
jj −RQ;r

jj |>t)≤P
(
|σ̂Q(Xj ; r)−σQ(Xj ; r)|>

√
t/2
)

+P
(
|σ̂Q(Xj ; r)−σQ(Xj ; r)|>

t

2σQ(Xj ; r)

)
≤2 exp

(
− n[η2

√
t/2− 1/n]2

)
+ 2 exp

(
−n(η2t/(2σ

Q(Xj ; r))−1/n)2
)
. (B.9)
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Similarly, we have

P(|R̂Q;r
jk −RQ;r

jk | > t)

≤P
(
|σ̂Q(Xj +Xk; r)− σQ(Xj +Xk; r)| >

√
t
)

+ P
(
|σ̂Q(Xj −Xk; r)− σQ(Xj −Xk; r)| >

√
t
)

+ P
(
|σ̂Q(Xj +Xk; r)− σQ(Xj +Xk; r)| >

t

σQ(Xj +Xk; r)

)
+ P

(
|σ̂Q(Xj −Xk; r)− σQ(Xj −Xk; r)| >

t

σQ(Xj −Xk; r)

)
≤4 exp(−n[η2

√
t− 1/n]2) + 4 exp(−n(η2t/ζmax − 1/n)2), (B.10)

where ζmax := 2
√
||RQ;r||max. Combining (B.9) and (B.10) leads to that, with probability larger

than or equal to 1− 8α,

||R̂Q;r −RQ;r||max ≤

max
{ 2

η2
2

(√2 log d+ log(1/α)

n
+

1

n

)2

︸ ︷︷ ︸
T3

,
2
√
||RQ;r||max

η2

(√2 log d+ log(1/α)

n
+

1

n

)
︸ ︷︷ ︸

T4

}
,

whenever T3 ≤ 2κ2
2 and T4 ≤ 2κ1 · minj 6=k{2σQ(Xj ; r), σ

Q(Xj + Xk), σ
Q(Xj − Xk)}. Finally,

combining the above inequality with Theorem 5.3, we complete the whole proof.

C Proofs of Corollaries in Section 7

In this section we provide the proofs of the results presented in Section 7.

C.1 Proof of Corollary 7.1

Proof. We first prove that (7.4) holds. Because RQ;r is feasible to Equation (7.2), we have

||R̂Q;r − R̃Q;r||max ≤ ||R̂Q;r −RQ;r||max,

implying that

P
(∣∣∣R̃Q;r

jk −RQ;r
jk

∣∣∣ ≥ t) ≤P(∣∣∣R̃Q;r
jk − R̂Q;r

jk

∣∣∣+
∣∣∣R̂Q;r

jk −RQ;r
jk

∣∣∣ ≥ t)
≤P
(
||R̃Q;r − R̂Q;r||max + ||R̂Q;r −RQ;r||max ≥ t

)
≤P(||R̂Q;r −RQ;r||max ≥ t/2).

Combined with (B.9) and (B.10), the above inequality implies that

P
(
||R̃Q;r

jk −RQ;r
jk ||max ≥ t

)
≤d4(4 exp(−n[η2

√
t/4− 1/n]2) + 4 exp(−n(η2t/(2ζmax)− 1/n)2)).

Plugging t = ζ into the above equation, we have the desired result.
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Secondly, we prove that (7.5) holds. Because EX4
j ≤ K, by Chebyshev’s inequality, with

probability no smaller than 1− n−2ξ, we have

|σ̂2
j − σ2(Xj)| ≤ c1n

−1/2+ξ.

Moreover, using (B.9), we have for any given j ∈ {1, . . . , d}, by Markov inequality, with probability

larger than or equal to 1− 4α,

|R̂Q;r
jj −RQ;r

jj | ≤ ζj .

For notation simplicity, we denote σj := σj(Xj), rj := RQ;r
jj , and r̂j := R̂Q;r

jj . Accordingly, we have

||Σ̂Q;r −Σ||max =
∥∥∥ σ̂2

j

r̂j
R̃Q;r −

σ2
j

rj
RQ;r

∥∥∥
max

≤
∥∥∥ σ̂2

j

r̂j
R̃Q;r −

σ2
j

rj
R̃Q;r

∥∥∥
max

+
σ2
j

rj
||R̃Q;r −RQ;r||max

≤
∣∣∣ σ̂2
j

r̂j
−
σ2
j

rj

∣∣∣ · (||R̃Q;r −RQ;r||max + ||RQ;r||max) +
1

cQ;r
||R̃Q;r −RQ;r||max

while noting that cQ;r = rj/σ
2
j . Finally, we have∣∣∣ σ̂2

j

r̂j
−
σ2
j

rj

∣∣∣ =
∣∣∣ σ̂2
j − σ2

j

r̂j
+ σ2

j

( 1

r̂j
− 1

rj

)∣∣∣ ≤ |σ̂2
j − σ2

j |
rj − |r̂j − rj |

+
σ2
j

rj
· |r̂j − rj |
rj − |r̂j − rj |

.

This implies that with probability no smaller than 1− n−2ξ − 12α, we have∣∣∣ σ̂2
j

r̂j
−
σ2
j

rj

∣∣∣ ≤ c1n
−1/2+ξ

rj − ζj
+

1

cQ;r
· ζj
rj − ζj

,

which completes the proof of the second part. The third part can then be proved by combining

Equation (7.5) and the proof of Theorem 2 in Xue et al. (2012).

C.2 Proof of Corollary 7.4

Proof. According to Theorem 6 in Cai et al. (2011), if the tuning parameter λ ≥ ‖Θ‖1,∞‖Σ̂Q;r −
Σ‖max, we have there exists two constants C1, C2 such that

‖Θ̂Q;r −Θ‖2 ≤ C1sλ
1−q, ‖Θ̂Q;r −Θ‖max ≤ ‖Θ‖1,∞λ and ‖Θ̂Q;r −Θ‖2F ≤ C2sdλ

2−q.

Combining the above results with Corollary 7.1, we prove the desire rate.

C.3 Proof of Corollary 7.5

Proof. According to Theorem 3.1 in Vu et al. (2013), if λ ≥ ‖R̂−R‖max and max1≤k≤m ||uk(Σ)||0 ≤
s, we have

‖Π̂Q;r
m −Πm‖F ≤

4sλ

λ1(R)− λ2(R)
· ||R̂−R||max. (C.1)

where ΠQ;r
m , R, and R̂ can be the Q-PCA estimator, population and sample versions of the quantile-

based scatter matrix estimators based on the gQNE. Combining the rate of ‖R̂−R‖max in Theorem

5.5 and Theorem 5.6, the theorem is proved.
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C.4 Proof of Corollary 7.6

Proof. We mainly follow the procedure in the proof of Theorem 2 in Cai and Liu (2011). Suppose

δTβ∗ ≤M . Let δ = µ1 − µ2, δ̂ = µ̂1 − µ̂2. Since (β̂Q;r)Q;r is the solution of (7.9), we have

|(β∗)T Σ̂Q;rβ̂Q;r − (β∗)Tδ| ≤ (λ+ ‖δ̂ − δ‖∞)‖β∗‖1 ≤ 2λ‖β∗‖1,

and

|(β∗)T Σ̂Q;rβ̂Q;r − (β̂Q;r)Tδ| ≤ (λ+ ‖δ̂ − δ‖∞)‖β̂Q;r‖1 ≤ 2λ‖β∗‖1.

Combining the above two equations together, we have |(β̂Q;r − β∗)Tδ| ≤ 4λ‖β∗‖1 which implies

((β̂Q;r)Tδ)2

(δTβ∗)2
≥ 1− 8M−1λ‖β∗‖1. (C.2)

On the other hand, we have

‖Σβ̂Q;r − δ‖∞ ≤ ‖(Σ− Σ̂Q;r)β̂Q;r‖∞ + 2λ ≤ ‖β∗‖1‖‖Σ− Σ̂Q;r‖max + 2λ,

which implies that

|(β̂Q;r)TΣβ̂Q;r − δTβ∗| ≤ |(β̂Q;r)TΣβ̂Q;r − δT β̂Q;r|+ |(β̂Q;r − β∗)Tδ|
≤ ‖β∗‖21‖‖Σ− Σ̂Q;r‖max + 6λ‖β∗‖1, (C.3)

where the last inequality is due to the definition of β̂Q;r. Therefore, for sufficiently large n, we have

(β̂Q;r)TΣβ̂Q;r ≥M/2. We can rewrite (C.3) as

δTβ∗

(β̂Q;r)TΣβ̂Q;r
≥ 1− 2M−1‖β∗‖21‖‖Σ− Σ̂Q;r‖max − 12M−1λ‖β∗‖1. (C.4)

Combining (C.2) and (C.4), we have

Rq((β̂Q;r)Q;r)

Rq(β∗)
=

((β̂Q;r)Tδ)2

(β̂Q;r)TΣβ̂Q;rδTβ∗
≥ 1− 2M−1‖β∗‖21‖‖Σ− Σ̂Q;r‖max − 20M−1λ‖β∗‖1.

This completes the proof.

D Algorithm for Matrix Maximum Norm Projection

This section describes the algorithm to solve (4.4) for the matrix element-wise supremum norm

‖ · ‖max. In particular, we aim to solve

R̃ = arg min
R�0

||R− R̂||max (D.1)

by the algorithm proposed in Xu and Shao (2012). Since for any matrix A ∈ Rd we can reformulate

‖A‖max = maxZ∈B1 Tr(ZTA), where B1 = {Z ∈ Rd×d | Z = ZT ,
∑

i,j=1,...,d |Zij | ≤ 1}. We define

B2 = {Z ∈ Rd×d |� 0} and (D.1) can be rewritten as a minimax problem

min
R∈B2

max
Z∈B1

Tr(ZT (R− R̂)). (D.2)
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Algorithm 1 Matrix nearness problem in the maximum norm in (D.1)

R̃← MatrixMaxProj(R̂,Z0,R0, γ, ε,N)

for t = 0, . . . , N do

Rt
0 ← Rt − PB2(Rt − Zt)

Zt0 ← Zt − PB1(Rt + Zt − R̂)

if max{‖Rt
0‖max, ‖Rt

0‖max} < ε, then

break

else

Rt+1 ← Rt − γ(Rt
0 − Zt0)/2

Zt+1 ← Zt − γ(Rt
0 + Zt0)/2

end if

end for

return R̃ = Rt

In order to solve the above minimax problem, we need to first study two subproblems on matrix

projection. The first is

PB2(A) = arg min
B∈B2

‖A−B‖2F, (D.3)

where ‖·‖F is the Frobenius norm. We can have the closed form solution to D.3 such that PB2(A) =

UΛ+UT , where A = UΛUT is the spectral decomposition of A and Λ+ = diag(Λ11∨0, . . . ,Λdd∨0).

The second subproblem we are interested in is PB1(A) = arg minB∈B2
‖A−B‖2F. This is equivalent

to the vectorized problem PB1(A) = arg min‖v‖1≤1 ‖vec(A) − v‖22. We denote a = vec(A) and

|a| = sign(a) ◦ a, where ◦ is the Hadamard product. Let T|a| be the permutation transformation

matrix of |a| such that T|a|(|a|) is in descending order. We now define x̃, ỹ under two kinds of

cases: ‖a‖1 ≤ 1 and ‖a‖1 > 1.

If ‖a‖1 ≤ 1, we let (x̃, ỹ) := (ã, 0). If ‖a‖1 > 1, we define ∆a = (ã1 − ã2, . . . , ãd−1 − ãd, ãd)T .

Since ∆ai > 0 for alll i = 1, . . . , n and
∑d

i=1 i∆ai = ‖a‖1 > 1. We choose the smallest integer K

such that
∑K

i=1 i∆ai ≥ 1. Let

ỹ :=
1

K

( K∑
i=1

ãi − 1
)
, x̃ := (ã1 − ỹ, . . . , ãK − ỹ, 0, . . . , 0)T ∈ Rd.

According to Xu and Shao (2012), we can write PB1(A) = sign(a) ◦ T−1
‖a‖(x̃). We set arbitrary

Z0 ∈ B1, R0 ∈ B2 as the initializations of the algorithm, γ ∈ (0, 2) as the step length of each

iteration, ε > 0 as the tolerance, N as the maximum number of iterations. Algorithm 1 provides

the following convergence to the exact solution of (D.1).

Theorem D.1 (Xu and Shao (2012)). If (Ropt,Zopt) is the solution to (D.2). Let Rt,Zt,Rt
0,Z

t
0

be the sequence obtained from Algorithm 1. We have

‖Rt+1 −Ropt‖2F + ‖Zt+1 − Zopt‖2F ≤ ‖Rt −Ropt‖2F + ‖Zt − Zopt‖2F +
γ(2− γ)

2
(‖Rt

0‖2F + ‖Zt0‖2F).
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